Preface |
|
xv | |
Part I Artificial Neural Networks |
|
|
Chapter 1 Introduction to Artificial Neural Networks |
|
|
3 | (10) |
|
|
3 | (1) |
|
|
4 | (1) |
|
|
5 | (1) |
|
1.4 Artificial Neural Network |
|
|
6 | (2) |
|
|
6 | (1) |
|
1.4.2 General Properties of ANN |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
8 | (1) |
|
|
9 | (1) |
|
1.6 ANN versus Other Models |
|
|
9 | (4) |
|
Chapter 2 Artificial Neuron |
|
|
13 | (12) |
|
2.1 Components of Artificial Neuron |
|
|
13 | (2) |
|
2.2 Methods for Computing Net Information |
|
|
15 | (1) |
|
2.2.1 Summation (P) method |
|
|
16 | (1) |
|
2.2.2 Maximum (max) method |
|
|
16 | (1) |
|
2.2.3 Minimum (min) method |
|
|
16 | (1) |
|
|
16 | (1) |
|
|
16 | (9) |
|
|
17 | (1) |
|
|
17 | (2) |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
20 | (2) |
|
2.3.6 Hyperbolic tangent function |
|
|
22 | (3) |
|
Chapter 3 Network Training |
|
|
25 | (30) |
|
3.1 Pre-Training Procedures |
|
|
25 | (4) |
|
3.1.1 Data Standardization |
|
|
25 | (3) |
|
3.1.1.1 Standardization methods when using sigmoid function |
|
|
26 | (2) |
|
3.1.1.2 Standardization methods when using hyperbolic tangent function |
|
|
28 | (1) |
|
3.1.2 Network Initialization |
|
|
28 | (1) |
|
|
29 | (18) |
|
3.2.1 Back-propagation algorithm |
|
|
30 | (12) |
|
3.2.1.1 Updating weights in output-inner layers |
|
|
33 | (1) |
|
3.2.1.2 Updating weights in inner-input layers |
|
|
34 | (1) |
|
|
35 | (7) |
|
3.2.2 Radial basis function |
|
|
42 | (2) |
|
3.2.3 Conjugate gradient algorithm |
|
|
44 | (1) |
|
3.2.4 Cascade correlation algorithm |
|
|
45 | (1) |
|
3.2.5 Generalized regression algorithm |
|
|
46 | (1) |
|
|
47 | (1) |
|
|
48 | (4) |
|
|
52 | (1) |
|
|
53 | (2) |
|
|
55 | (6) |
|
4.1 De-standardization of Model Output |
|
|
55 | (1) |
|
4.2 Evaluating Model Performance |
|
|
55 | (4) |
|
4.3 Over-training and Cross-training |
|
|
59 | (2) |
|
Chapter 5 Model Application in Water Resources Engineering |
|
|
61 | (48) |
|
|
61 | (27) |
|
5.1.1 Total suspended sediment |
|
|
61 | (6) |
|
|
67 | (7) |
|
5.1.3 Dispersion coefficient |
|
|
74 | (3) |
|
|
77 | (2) |
|
5.1.5 Runoff at plot scale |
|
|
79 | (2) |
|
5.1.6 Runoff at watershed scale |
|
|
81 | (2) |
|
5.1.7 Flood hydrograph at basin scale |
|
|
83 | (5) |
|
|
88 | (1) |
|
|
89 | (6) |
|
5.3.1 Forecasting flood hydrograph at basin scale |
|
|
89 | (6) |
|
|
95 | (1) |
|
5.5 Filling Gap in Time Series Data |
|
|
96 | (4) |
|
|
100 | (9) |
Part II Fuzzy Logic Algorithm |
|
|
Chapter 6 Introduction to Fuzzy Logic Algorithm |
|
|
109 | (6) |
|
|
109 | (1) |
|
6.2 Basic Concept in Fuzzy Logic |
|
|
110 | (2) |
|
|
112 | (3) |
|
Chapter 7 Fuzzy Membership Functions, Set Operations, and Fuzzy Relations |
|
|
115 | (20) |
|
7.1 Fuzzy Membership Functions |
|
|
115 | (3) |
|
|
118 | (10) |
|
|
118 | (1) |
|
|
119 | (6) |
|
|
119 | (1) |
|
7.2.2.2 Intersection of sets |
|
|
120 | (2) |
|
7.2.2.3 Complementary sets |
|
|
122 | (1) |
|
|
122 | (2) |
|
7.2.2.5 Operation properties of fuzzy sets |
|
|
124 | (1) |
|
7.2.3 Operations unique to fuzzy sets |
|
|
125 | (15) |
|
|
125 | (1) |
|
|
125 | (1) |
|
|
126 | (1) |
|
|
127 | (1) |
|
|
128 | (4) |
|
|
132 | (3) |
|
Chapter 8 Constructing Fuzzy Model |
|
|
135 | (16) |
|
|
135 | (2) |
|
|
137 | (3) |
|
8.3 Fuzzy Inference Engine |
|
|
140 | (6) |
|
8.3.1 Inference sub-process |
|
|
140 | (5) |
|
8.3.2 Composition sub-process |
|
|
145 | (1) |
|
|
146 | (4) |
|
|
150 | (1) |
|
Chapter 9 Fuzzy Model Application in Water Resources Engineering |
|
|
151 | (34) |
|
|
151 | (1) |
|
|
152 | (5) |
|
|
154 | (1) |
|
9.2.2 Model calibration and application |
|
|
155 | (2) |
|
9.3 Sheet Sediment Prediction |
|
|
157 | (7) |
|
|
157 | (4) |
|
9.3.2 Physics-based model |
|
|
161 | (2) |
|
|
163 | (1) |
|
9.4 Peak Discharge Prediction |
|
|
164 | (4) |
|
|
164 | (1) |
|
9.4.2 ANN model training and testing |
|
|
164 | (1) |
|
9.4.3 FL model calibration and validation |
|
|
164 | (2) |
|
9.4.4 KWA model calibration and validation |
|
|
166 | (2) |
|
9.5 Runoff Hydrograph Simulation |
|
|
168 | (3) |
|
9.5.1 ANN model training and testing |
|
|
168 | (2) |
|
9.5.2 FL model calibration and validation |
|
|
170 | (1) |
|
9.5.3 KWA model calibration and verification |
|
|
170 | (1) |
|
9.6 Hydrograph Simulation at Watershed Scale |
|
|
171 | (1) |
|
9.7 Dispersion Prediction |
|
|
172 | (7) |
|
|
173 | (3) |
|
9.7.2 Regression-based model |
|
|
176 | (1) |
|
|
177 | (2) |
|
|
179 | (6) |
Part III Genetic Algorithms |
|
|
Chapter 10 Genetic Algorithms (GAS) |
|
|
185 | (18) |
|
|
185 | (1) |
|
|
186 | (2) |
|
|
188 | (15) |
|
10.3.1 Forming initial gene pool |
|
|
189 | (1) |
|
10.3.2 Evaluating fitness of each chromosome |
|
|
190 | (2) |
|
|
192 | (1) |
|
10.3.4 Cross-over operation |
|
|
193 | (3) |
|
|
194 | (1) |
|
|
195 | (1) |
|
|
195 | (1) |
|
10.3.4.4 Uniform crossing |
|
|
195 | (1) |
|
10.3.4.5 Using sub-chromosome |
|
|
195 | (1) |
|
|
196 | (1) |
|
|
196 | (7) |
|
Chapter 11 Variant of Genetic Algorithm |
|
|
203 | (18) |
|
11.1 Variant of Genetic Algorithms |
|
|
203 | (8) |
|
11.1.1 Responsive perturbation algorithm |
|
|
204 | (1) |
|
11.1.2 Trait-based heterogeneous populations (TUT) |
|
|
205 | (2) |
|
11.1.3 Trait-based heterogeneous populations plus (TbHP+) |
|
|
207 | (4) |
|
|
211 | (6) |
|
|
217 | (4) |
|
Chapter 12 Genetic Algorithm Model Applications in Water Resources Engineering |
|
|
221 | (42) |
|
12.1 GA Application Problems |
|
|
221 | (36) |
|
12.1.1 Longitudinal dispersion coefficient in natural streams |
|
|
221 | (10) |
|
12.1.2 Hydrograph simulation |
|
|
231 | (9) |
|
12.1.2.1 Watershed and hydrologic data |
|
|
231 | (4) |
|
12.1.2.2 GA-RCM model implementation and calibration |
|
|
235 | (1) |
|
12.2.2.3 Hydrograph predictions |
|
|
236 | (4) |
|
12.1.3 Sensitivity analysis |
|
|
240 | (6) |
|
12.1.3.1 Number of events used in calibration |
|
|
240 | (2) |
|
12.1.3.2 Using shorter wave travel time events in the calibration |
|
|
242 | (1) |
|
12.1.3.3 Using lower peak events in calibration |
|
|
243 | (3) |
|
12.1.4 Hydrograph simulation using level data |
|
|
246 | (4) |
|
12.1.4.1 Hydrograph predictions |
|
|
247 | (3) |
|
12.1.5 Mean and bankfull discharge prediction |
|
|
250 | (7) |
|
12.1.5.1 Non-linear regression method |
|
|
251 | (1) |
|
12.1.5.2 Artificial neural networks method |
|
|
251 | (1) |
|
|
252 | (1) |
|
12.1.5.4 Genetic algorithm |
|
|
253 | (4) |
|
|
257 | (2) |
|
|
259 | (4) |
Index |
|
263 | |