Muutke küpsiste eelistusi

Soil Physics with HYDRUS: Modeling and Applications [Kõva köide]

(University of California, Riverside, USA), (University of Georgia, Athens, USA)
  • Formaat: Hardback, 392 pages, kõrgus x laius: 234x156 mm, kaal: 890 g, 21 Tables, black and white; 260 Illustrations, black and white
  • Ilmumisaeg: 21-May-2010
  • Kirjastus: CRC Press Inc
  • ISBN-10: 142007380X
  • ISBN-13: 9781420073805
  • Formaat: Hardback, 392 pages, kõrgus x laius: 234x156 mm, kaal: 890 g, 21 Tables, black and white; 260 Illustrations, black and white
  • Ilmumisaeg: 21-May-2010
  • Kirjastus: CRC Press Inc
  • ISBN-10: 142007380X
  • ISBN-13: 9781420073805
Numerical models have become much more efficient, making their application to problems increasingly widespread. User-friendly interfaces make the setup of a model much easier and more intuitive while increased computer speed can solve difficult problems in a matter of minutes. Co-authored by the softwares creator, Dr. Jirka imnek, Soil Physics with HYDRUS: Modeling and Applications demonstrates one- and two-dimensional simulations and computer animations of numerical models using the HYDRUS software.

Classroom-tested at the University of Georgia by Dr. David Radcliffe, this volume includes numerous examples and homework problems. It provides students with access to the HYDRUS-1D program as well as the Rosetta Module, which contains large volumes of information on the hydraulic properties of soils. The authors use HYDRUS-1D for problems that demonstrate infiltration, evaporation, and percolation of water through soils of different textures and layered soils. They also use it to show heat flow and solute transport in these systems, including the effect of physical and chemical nonequilibrium conditions. The book includes examples of two-dimensional flow in fields, hillslopes, boreholes, and capillary fringes using HYDRUS (2D/3D). It demonstrates the use of two other software packages, RETC and STANMOD, that complement the HYDRUS series.

Hands-on use of the windows-based codes has proven extremely effective when learning the principles of water and solute movement, even for users with very little direct knowledge of soil physics and related disciplines and with limited mathematical expertise. Suitable for teaching an undergraduate or lower level graduate course in soil physics or vadose zone hydrology, the text can also be used for self-study on how to use the HYDRUS models. With the information in this book, you can run models for different scenarios and with different parameters, and thus gain a better understanding of the physics of water flow and contaminant transport.
Preface xi
Chapter 1 Soil Solid Phase
1(16)
1.1 Introduction
1(1)
1.2 Soil Phases
1(2)
1.3 Soil Texture
3(4)
1.4 Soil Mineralogy
7(3)
1.5 Soil Structure
10(3)
1.6 Summary
13(1)
1.7 Derivations
14(2)
1.8 Problems
16(1)
Chapter 2 Soil Water Content and Potential
17(68)
2.1 Introduction
17(1)
2.2 Energy and Work
17(1)
2.3 Properties of Bulk Water
18(6)
2.4 Properties of Water at Air and Solid Interfaces
24(4)
2.5 Soil Water Content
28(2)
2.6 Measuring Soil Water Content
30(5)
2.6.1 Gravimetric Methods
30(1)
2.6.2 Time Domain Reflectometry
31(2)
2.6.3 Neutron Thermalization
33(1)
2.6.4 Capacitance Devices
34(1)
2.7 Soil Water Potential
35(11)
2.7.1 Gravitational Component
37(2)
2.7.2 Hydrostatic Component
39(3)
2.7.3 Solute Component
42(1)
2.7.4 Matric Component
43(1)
2.7.5 Air Pressure Component
44(1)
2.7.6 Total Soil Water Potential
45(1)
2.8 Measuring Soil Water Potential Components
46(14)
2.8.1 Tensiometers
46(3)
2.8.2 Piezometers
49(4)
2.8.3 Thermocouple Psychrometers
53(1)
2.8.4 Heat Dissipation Sensors
54(1)
2.8.5 Electrical Resistance Sensors
55(1)
2.8.6 Tension Plates and Pressure Chambers
55(1)
2.8.6.1 Tension Plates
56(2)
2.8.6.2 Pressure Chambers
58(1)
2.8.6.3 Pressure Chambers with Disturbed Samples
59(1)
2.9 The Soil Water Retention Curve
60(13)
2.9.1 Texture and Structure Effects
60(1)
2.9.2 Plant Available Water
61(1)
2.9.3 Hysteresis in the Soil Water Retention Curve
62(3)
2.9.4 Soil Water Retention Curve Equations
65(8)
2.10 RETC Program
73(6)
2.11 Summary
79(1)
2.12 Derivations
79(1)
2.12.1 Capillary Rise Law
79(1)
2.12.2 Hydraulic Capacity Function for van Genuchten Equation
80(1)
2.13 Problems
80(5)
Chapter 3 Steady Water Flow in Soils
85(46)
3.1 Introduction
85(1)
3.2 Steady Flow in Saturated Soil
85(12)
3.2.1 Poiseuille Equation
85(1)
3.2.2 Darcy Equation
86(4)
3.2.3 Saturated Flow Parameters
90(3)
3.2.4 Flow Perpendicular to Layers
93(3)
3.2.5 Flow Parallel to Layers
96(1)
3.2.6 Flow to a Drain
96(1)
3.3 Steady Flow in Unsaturated Soil
97(12)
3.3.1 Buckingham-Darcy Equation
98(1)
3.3.2 Unsaturated Hydraulic Conductivity
98(2)
3.3.3 Macroscopic Capillary Length
100(4)
3.3.4 Analytical Solutions for Steady Flow
104(1)
3.3.4.1 Infiltration to a Water Table
105(1)
3.3.4.2 Infiltration from a Ring
106(2)
3.3.4.3 Infiltration from a Borchole
108(1)
3.4 Measurements of Hydraulic Properties
109(7)
3.4.1 Laboratory Methods
109(2)
3.4.2 Field Methods
111(2)
3.4.3 Pedotransfer Functions
113(3)
3.5 Summary
116(1)
3.6 Derivations
117(11)
3.6.1 Poiseuille Equation
118(3)
3.6.2 The Drainage Ellipse Equation
121(1)
3.6.3 The van Genuchten K(S) Function
122(2)
3.6.4 Relationship between the Gardner Exponent and Macroscopic Capillary Length
124(1)
3.6.5 Steady Infiltration to a Water Table
125(2)
3.6.6 The Falling-Head Method
127(1)
3.7 Problems
128(3)
Chapter 4 Heat Flow in Soils
131(52)
4.1 Introduction
131(1)
4.2 Surface Energy Balance
131(4)
4.3 Steady Soil Heat Flux
135(2)
4.4 Transient Soil Heat Flux
137(22)
4.4.1 Heat Transport Equation
137(5)
4.4.2 Analytical Solutions to the Heat Transport Equation
142(8)
4.4.3 Numerical Solutions to the Heat Flow Equation
150(9)
4.5 Soil Heat Flow with HYDRUS-1D
159(6)
4.6 Summary
165(1)
4.7 Derivations
166(9)
4.7.1 Properties of the Laplace Transform
167(2)
4.7.2 Laplace Transform Solution to the Heat Flow Equation
169(4)
4.7.3 Properties of the Complementary Error Function
173(2)
4.8 Problems
175(8)
Chapter 5 Transient Water Flow in Soils
183(66)
5.1 Introduction
183(1)
5.2 Transient Water Flow
183(5)
5.2.1 The Richards Equation
183(2)
5.2.2 Initial Conditions
185(1)
5.2.3 Boundary Conditions
186(1)
5.2.3.1 System-Independent Boundary Conditions
186(1)
5.2.3.2 System-Dependent Boundary Conditions
187(1)
5.3 Numerical Solutions to the Richards Equation
188(4)
5.4 Infiltration
192(22)
5.4.1 Infiltration into a Uniform Soil
192(8)
5.4.2 Soil Crusts and Subsurface Layers
200(5)
5.4.3 Infiltration Equations
205(1)
5.4.3.1 Green-Ampt Equations
205(4)
5.4.3.2 Curve Number Approach
209(2)
5.4.4 Borehole Infiltration
211(1)
5.4.5 Subsurface Irrigation
212(2)
5.5 Redistribution
214(2)
5.6 Evaporation
216(1)
5.7 Transpiration
217(4)
5.8 Preferential Flow
221(9)
5.8.1 Macropores
223(3)
5.8.2 Fingering and Funnel Flow
226(2)
5.8.3 Capillary Barriers
228(2)
5.9 Groundwater Recharge and Discharge
230(5)
5.10 Inverse Solutions and Parameter Optimization
235(6)
5.11 Summary
241(1)
5.12 Derivations
242(3)
5.13 Problems
245(4)
Chapter 6 Solute Transport
249(98)
6.1 Introduction
249(1)
6.2 Conservation and Flux Equations
249(7)
6.2.1 Conservation Equation
249(1)
6.2.2 Transport Processes
250(1)
6.2.2.1 Advection
250(1)
6.2.2.2 Diffusion
250(2)
6.2.2.3 Hydrodynamic Dispersion
252(4)
6.3 Advection Dispersion Equation
256(34)
6.3.1 Analytical Solution
257(3)
6.3.2 Breakthrough Curves
260(3)
6.3.3 Pulse Inputs
263(4)
6.3.4 Equilibrium Adsorption and the Advection Dispersion Equation
267(1)
6.3.4.1 Linear Equilibrium Adsorption
268(6)
6.3.4.2 Nonlinear Equilibrium Adsorption
274(1)
6.3.5 Transformations and the Advection Dispersion Equation
275(2)
6.3.6 Volatilization and the Advection Dispersion Equation
277(3)
6.3.7 Flux vs. Resident Concentrations
280(1)
6.3.8 Nonequilibrium Solute Transport
281(1)
6.3.8.1 Physical Nonequilibrium
281(1)
6.3.8.2 Chemical Nonequilibrium
281(5)
6.3.9 Stochastic Advection Dispersion Equation
286(4)
6.4 STANMOD and CXTFIT
290(11)
6.4.1 Direct Mode
290(3)
6.4.2 Inverse Mode and Parameter Optimization
293(8)
6.5 Numerical Approaches for Solute Transport
301(6)
6.5.1 Finite Difference Approach
302(2)
6.5.2 Finite Element Approach
304(1)
6.5.3 Stability and Oscillations
305(2)
6.6 HYDRUS Examples of Solute Transport
307(18)
6.6.1 Nonlinear Adsorption and Transport
307(6)
6.6.2 Transport of Nitrogen Species
313(4)
6.6.3 Parameter Optimization of Nitrogen Species Model
317(5)
6.6.4 Solute Transport in the Capillary Fringe
322(3)
6.7 Summary
325(2)
6.8 Derivations
327(12)
6.8.1 Laplace Transform Solution to ADE
327(8)
6.8.2 Expected Value for the Lognormal Distribution
335(2)
6.8.3 Numerical Dispersion
337(2)
6.9 Problems
339(8)
Appendix 347(4)
References 351(12)
Index 363
David E. Radcliffe, Jiri Simunek