Muutke küpsiste eelistusi

Space-Division Multiplexing in Optical Communication Systems: Extremely Advanced Optical Transmission with 3M Technologies 1st ed. 2022 [Kõva köide]

Edited by , Edited by , Edited by , Edited by
  • Formaat: Hardback, 483 pages, kõrgus x laius: 235x155 mm, kaal: 939 g, 304 Illustrations, color; 99 Illustrations, black and white; XXXV, 483 p. 403 illus., 304 illus. in color., 1 Hardback
  • Sari: Springer Series in Optical Sciences 236
  • Ilmumisaeg: 31-Aug-2022
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030876179
  • ISBN-13: 9783030876173
  • Kõva köide
  • Hind: 141,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 166,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 483 pages, kõrgus x laius: 235x155 mm, kaal: 939 g, 304 Illustrations, color; 99 Illustrations, black and white; XXXV, 483 p. 403 illus., 304 illus. in color., 1 Hardback
  • Sari: Springer Series in Optical Sciences 236
  • Ilmumisaeg: 31-Aug-2022
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030876179
  • ISBN-13: 9783030876173
This book presents new frontiers in data communication. To transcend the physical limitations of current optical communication technologies, totally new multiplexing schemes beyond TDM/WDM, novel transmission optical fibers handling well above Pbit/s capacity, and next-generation optical submarine cable systems will need to be developed. The book offers researchers working at the forefront, as well as advanced Ph.D. students in the area of optical fiber communications systems and related fields, an essential guide to state-of-the-art optical transmission technologies. It explores promising new technologies for the exabit era; namely, the three “M technologies”: multi-level modulation, multi-core fiber, and multi-mode control.
1 Introduction
1(38)
Toshio Morioka
Yoshinari Awaji
Kazumasa Enami
Yutaka Miyamoto
Itsuro Morita
Yukihiko Okumura
Masatoshi Suzuki
Hidehiko Takara
Jun Terada
Kenji Yamamoto
1.1 Physical Limits and Prospects of Optical Communication Systems
2(1)
1.2 EXAT Initiative and 3M Technologies
3(4)
1.2.1 EXAT Initiative
3(2)
1.2.2 3M Technologies
5(2)
1.3 Requirements for Future Applications
7(14)
1.3.1 Ultra-Realistic Communication
7(7)
1.3.2 Optical Network Technologies for Wireless Communication Network
14(7)
1.4 State-of-the-Art Terrestrial Optical Transmission
21(5)
1.4.1 Expansion of Broadband Services in Japan
21(1)
1.4.2 Optical Access Technology
22(1)
1.4.3 High-Capacity Optical Transmission Technology
22(4)
1.5 State-of-the-Art Optical Submarine Cable Systems
26(13)
1.5.1 Main Features of Optical Submarine Cable Systems
26(3)
1.5.2 Main Building Blocks of Optical Submarine Cable Systems
29(4)
1.5.3 The State-of-the-Art Technologies in Optical Submarine Cable Systems
33(1)
References
34(5)
2 Optical Fibers for Space-Division Multiplexing
39(132)
Masaharu Ohashi
Shoichiro Matsuo
Tetsuya Hayashi
Katsunori Imamura
Yasuo Kokubun
Masanori Koshiba
Takayoshi Mori
Kazuhide Nakajima
Masataka Nakazawa
Kunimasa Saitoh
Taiji Sakamoto
Takashi Sasaki
2.1 Introduction
39(2)
2.2 Recent Progress of Single-Core Fiber Characteristics, Loss andAeff
41(8)
2.2.1 Progress of Loss Improvement for Various Types of Single-Core Fiber
41(1)
2.2.2 Low-Loss Pure-Silica-Core Fiber (PSCF)
42(2)
2.2.3 Optimal Fiber Design Based on Fiber FOM
44(2)
2.2.4 Micro-bending Loss Sensitivity
46(2)
2.2.5 Environmental and Mechanical Performances of Ultra-low-loss PSCF
48(1)
2.2.6 Conclusion
49(1)
2.3 Multi-core Fiber
49(58)
2.3.1 Theory of Crosstalk
49(14)
2.3.2 Low-Crosstalk MCF
63(9)
2.3.3 High-Density MCF
72(17)
2.3.4 Reliability of MCF
89(2)
2.3.5 Fabrication Technology of MCF
91(4)
2.3.6 Measurement Technology
95(12)
2.4 Few-Mode Fiber
107(20)
2.4.1 Design Trend of FMF
107(5)
2.4.2 DMD and MIMO
112(6)
2.4.3 Mode Coupling
118(4)
2.4.4 Measurement Technology for Mode Coupling
122(5)
2.5 Few-Mode Multi-core Fiber
127(15)
2.5.1 FM-MCFs with Uncoupled Core Design
127(12)
2.5.2 125-μ.m Cladding 2 LP-mode 6-core Fiber
139(3)
2.6 Cabling Technology
142(10)
2.6.1 Prospect for MCF Cables and Their Application Areas
142(7)
2.6.2 High-Density MCF Cables
149(3)
2.7 Future Perspective
152(19)
2.7.1 Where Will Be the SDM Fibers First Deployed?
152(5)
2.7.2 Standardization
157(2)
References
159(12)
3 Optical Connection Technologies
171(28)
Ryo Nagase
Kiichi Hamamoto
Yoshiteru Abe
Yasuo Kokubun
Shoichiro Matsuo
3.1 Introduction
171(1)
3.2 Fusion Splicing Technology
172(4)
3.2.1 Outer Core Alignment
172(2)
3.2.2 Uniform Heating
174(2)
3.3 Optical Connectors
176(3)
3.3.1 Fundamentals of Optical Connectors
176(1)
3.3.2 Butt Joint-type MCF Connector
177(2)
3.3.3 Lens Coupling Type MCF Connector
179(1)
3.3.4 Few-Mode Fibers Connection
179(1)
3.4 Fan-In/Fan-Out Device for Multi-core Fiber
179(4)
3.4.1 Bundled Fiber-Type Fan-In/Fan-Out Device
180(1)
3.4.2 Fused Fiber-Type Fan-In/Fan-Out Device
181(1)
3.4.3 Free-Space Coupling-Type Fan-In/Fan-Out Device
182(1)
3.4.4 Three-Dimensional Waveguide-Type Fan-In/Fan-Out Device
183(1)
3.5 Mode Multiplexing/Demultiplexing Technologies for Few-Mode Fibers
183(16)
3.5.1 Overview
183(1)
3.5.2 Mode Converter, Mode Coupler and the Other Multi-mode-Related Devices Based on Optics
184(5)
3.5.3 Mode Converter, Mode Coupler and the Other Multi-mode-Related Devices Based on Waveguide Technology
189(6)
References
195(4)
4 Optical Amplification Technologies
199(58)
Makoto Yamada
Soichi Kobayashi
Hiroji Masuda
Shoichiro Matsuo
Moriya Nakamura
Shu Namiki
Hirotaka Ono
Ryuichi Sugizaki
Yukihiro Tsuchida
4.1 Introduction
200(3)
4.2 History of SDM Amplification Technology
203(3)
4.3 Multi-core Fiber Amplification Technology
206(24)
4.3.1 Target of Multi-core EDFA
206(1)
4.3.2 Categorization of Multi-core EDFA
207(1)
4.3.3 State-of-the-Art Multi-core EDFA Development Technology
208(15)
4.3.4 State-of-the-Art Multi-core Raman Amplification Technology
223(2)
4.3.5 Evaluation Methods
225(2)
4.3.6 Issues and Future Work
227(3)
4.4 Few-Mode Fiber Amplification Technology
230(6)
4.4.1 Target of Few-Mode EDFA
230(1)
4.4.2 State-of-the-Art Few-Mode EDFA
231(3)
4.4.3 State-of-the-Art Few-Mode Raman Amplification Technology
234(1)
4.4.4 Evaluation Methods
235(1)
4.4.5 Issues and Future Work
235(1)
4.5 Amplification Techniques for Expanding Transmission Bands
236(6)
4.5.1 1.3-μ.m Band Bismuth-Doped Amplifier
237(4)
4.5.2 Over 1.65-μ-m Band Amplifier
241(1)
4.6 Further Progress
242(15)
References
246(11)
5 Optical Transmission Technologies
257(112)
Itsuro Morita
Toshihiko Hirooka
Hidehiko Takara
Yoshinari Awaji
Kiyoshi Fukuchi
Koji Igarashi
Masafumi Koga
Yutaka Miyamoto
Takayuki Mizuno
Masataka Nakazawa
Benjamin J. Puttnam
Jun Sakaguchi
Akihide Sano
Takehiro Tsuritani
Shinji Yamashita
5.1 Introduction
258(1)
5.2 Overview of Transmission Technologies
258(4)
5.3 Multi-level Transmission Technologies
262(20)
5.3.1 Spectral Efficiency of QAM Signal and Shannon Limit
263(3)
5.3.2 Fundamental Configuration and Key Components of QAM Coherent Optical Transmission
266(7)
5.3.3 Higher-Order QAM Transmission Experiments
273(9)
5.4 Space Division Multiplexed Transmission Technologies
282(46)
5.4.1 Multi-core Transmission
282(27)
5.4.2 Multi-mode Transmission
309(5)
5.4.3 Multi-core Multi-mode Transmission
314(14)
5.5 Signal Processing Technologies
328(41)
5.5.1 State-of-the-Art Optical Signal Processing Technologies
328(11)
5.5.2 SDM Processing Technologies
339(9)
5.5.3 Orbital Angular Momentum
348(6)
References
354(15)
6 Network Technologies for SDM
369(40)
Werner Klaus
Jun Sakaguchi
Benjamin J. Puttnam
Nobuhiko Kikuchi
Yong Lee
Kenichi Tanaka
6.1 Basic Technologies for Network Nodes and Network Control
370(14)
6.1.1 SDM Switching and Node Elements
370(8)
6.1.2 SDM Network Control and Node Configuration
378(4)
6.1.3 Network Enhancements Due to MCF
382(2)
6.2 Application of SDM Technologies in Short-reach Systems
384(25)
6.2.1 Types of Short-reach Systems
385(4)
6.2.2 Application Example of SDM Technology in Short-reach Systems
389(14)
References
403(6)
7 High-Power Issues
409(44)
Toshio Morioka
Kazi S. Abedin
Nobutomo Hanzawa
Kenji Kurokawa
Kazunori Mukasa
Ryo Nagase
Hidehiko Takara
Shin-ichi Todoroki
Makoto Yamada
Shuichi Yanagi
7.1 Fiber Fuse
410(34)
7.1.1 Basic Properties
410(7)
7.1.2 Fiber Fuse of Optical Communication Fibers
417(7)
7.1.3 Detection Methods of Fiber Fuse
424(5)
7.1.4 Halting (Blocking) Methods of Fiber Fuse
429(5)
7.1.5 Fiber Fuse-Based Incidence
434(6)
7.1.6 Fiber Fuse Tolerant Fibers
440(4)
7.2 Safety of Optical Communication Systems (From the Viewpoint of IEC Laser Safety Standardization)
444(9)
7.2.1 Standardization of Laser Safety
444(1)
7.2.2 IEC Standards
445(1)
7.2.3 Safety Specifications for Optical Fiber Communication Systems
445(2)
7.2.4 Measures for Implementing Higher Optical Power
447(1)
7.2.5 Conclusion
448(1)
References
448(5)
8 Japanese National Projects on SDM Technologies
453(16)
Yoshinari Awaji
Yutaka Miyamoto
Tetsuya Miyazaki
Toshio Morioka
Itsuro Morita
Kazuhide Nakajima
Hidehiko Takara
Takehiro Tsuritani
8.1 Introduction
453(1)
8.2 i-FREE
454(3)
8.2.1 Various MCFs
454(1)
8.2.2 Characterization of MCF
455(1)
8.2.3 Interoperability Trial
456(1)
8.3 i-Action
457(4)
8.3.1 Research on Optical Amplifier
458(1)
8.3.2 Research on Connection
459(1)
8.3.3 Transmission System Technology
460(1)
8.4 i-FREE2
461(8)
8.4.1 MCFs for 100 Pbit/s-km Transmission
461(2)
8.4.2 FM-MCF Technology
463(2)
References
465(4)
9 Concluding Remarks
469(6)
Yuichi Matsushima
Takeshi Kamiya
9.1 Introduction Historical
469(2)
9.2 Challenges of SDM Deployment
471(1)
9.3 Major Application Fields
471(2)
9.4 Additional Research Efforts Needed
473(1)
9.5 Summary
473(2)
References
473(2)
Index 475