Muutke küpsiste eelistusi

Sparse Phased Array Antennas: Theory and Applications Unabridged edition [Kõva köide]

  • Formaat: Hardback, 320 pages, kõrgus x laius: 254x178 mm
  • Ilmumisaeg: 31-Mar-2022
  • Kirjastus: Artech House Publishers
  • ISBN-10: 163081878X
  • ISBN-13: 9781630818784
Teised raamatud teemal:
  • Formaat: Hardback, 320 pages, kõrgus x laius: 254x178 mm
  • Ilmumisaeg: 31-Mar-2022
  • Kirjastus: Artech House Publishers
  • ISBN-10: 163081878X
  • ISBN-13: 9781630818784
Teised raamatud teemal:
This ground-breaking resource gives you the background theories and know-how you need to effectively design active phased array antennas with wider bandwidth and scan volume utilizing sparse array technology. The book shows you how to incorporate aperiodic arrays and sparse arrays as a solution for overcoming the restrictions faced in conventional phased antenna designs - such as blind spots, limited scan volume, large power and cooling requirements, RF path losses, and increased complexity - while adhering to the maintenance of SWAP-C resources widely used in aerospace and defence.





Packed with step-by-step information and research results unavailable in any other single source to date, the book presents new concepts and techniques that potentially can be applied to many critical defense and commercial requirements such as: radars, satcom on move, sonars, weather monitoring, 5G and 6G for mobile communication, fault and crack detection in buildings and underground pipelines, automotive anti-collisions mechanism in automobiles, mine detection, through wall imaging, and more.





The book helps you to understand the fundamental antenna technology being deployed in modern systems and equips you to design problem-solving sparse array models proven by electromagnetic simulations that can reduce the cost and overall complexity of the existing systems. Numerous design studies are documented to validate the theories presented. The book takes into account the functional constraints in designing commercial and military systems while demonstrating provable techniques that are practical and achievable.





This is an important resource for phased array antenna designers interested in utilizing sparse array technology with wider bandwidth and scan volume. The book's straightforward approach and easy-to-follow language also make it accessible to students and those new to the field.
Preface xi
PART I Introduction
1(10)
1 The Beginning
3(8)
1.1 Introduction
3(1)
1.2 Past and Present of Sparse Antenna Arrays
3(1)
1.3 Advantages and Limitations of Sparse Array
4(1)
1.4 Application Scenario for Sparse Array Antennas
5(1)
1.5 Organization of the Book
6(5)
References
6(5)
PART II Antenna and Antenna Arrays
11(50)
2 Antenna Fundamentals
13(18)
2.1 Introduction
13(1)
2.2 Broad Classification of Antennas
14(2)
2.3 Antenna Characterization
16(4)
2.4 Types of Antennas
20(2)
2.5 Antenna Design Techniques
22(1)
2.6 Field Regions
23(3)
2.7 Antenna Measurements
26(3)
2.8 Summary of the
Chapter
29(2)
References
30(1)
3 Antenna Arrays
31(30)
3.1 Introduction
31(1)
3.2 Array Classification
32(1)
3.3 Antenna Array Electromagnetics
33(5)
3.3.1 Linear Antenna Array (LAA)
33(3)
3.3.2 Planar Antenna Array (PAA)
36(2)
3.4 Phased Array Antennas (PhAA)
38(4)
3.4.1 Principle of Beam Steering
39(3)
3.5 Antenna Array Design Constraints
42(19)
3.5.2 Grating Lobes Mechanism
42(2)
3.5.2 Mutual Coupling Phenomenon
44(5)
3.5.3 Antenna Array Design Techniques
49(6)
3.5.4 Practical Constraints in Regular or Dense Phased Array Antennas
55(2)
References
57(4)
PART III Electromagnetics of Sparse Array Antennas
61(221)
4 Generalized Expression for Directivity
63(46)
4.1 Introduction
63(3)
4.2 Generalized Exact Analytical Expression for Directivity
66(12)
4.2.1 Case Studies
71(7)
4.3 Approximate Expression for Directivity
78(7)
4.4 Concentric Ring Antenna Arrays (CRAs)
85(13)
4.4.1 Concentric Ring Sparse Array (CRSA)
90(5)
4.4.2 Effect of Rotation on CRSA
95(3)
4.5 Conclusions
98(11)
References
98(3)
Appendix 4A Derivation of (4.14)
101(2)
Appendix 4B Derivation of (4.21)
103(6)
5 Synthesis of Linear Sparse Array Antennas
109(52)
5.1 Introduction
109(1)
5.2 LAAs
109(5)
5.2.1 A Brief History of the Synthesis of LSAAs
111(2)
5.2.2 Sparse Versus Dense Linear Array Antennas
113(1)
5.3 Numerical Studies on LSAAs
114(9)
5.3.1 An LSAA with 60 Grid Locations (d = X/2)
114(4)
5.3.2 The Effect of Mutual Coupling and the Choice of the Array Element
118(1)
5.3.3 The Relationship Between SLL and the Number of Elements
119(1)
5.3.4 Relationship Between the Thinning Ratio (Fill Factor) and the Number of Elements
119(1)
5.3.5 Scan Performance
120(3)
5.4 ADT for the Synthesis of Nonuniform LSAA
123(16)
5.4.1 Usage of ADT for the Array Synthesis
123(3)
5.4.2 Numerical Case Studies
126(9)
5.4.3 Oversized Linear Sparse Array Antennas
135(3)
5.4.4 Highly Sparse Linear Antenna Array (dno = IX)
138(1)
5.5 Synthesis of Taylor-Like Distribution
139(17)
5.5.1 Design and Optimization Philosophy
142(4)
5.5.2 A 60-Element Linear Sparse Antenna Array (LSAA)
146(4)
5.5.3 Optimization of a 60-Element LSAA
150(3)
5.5.4 A 200-Element Linear Sparse Array Antenna (LSAA)
153(2)
5.5.5 A 3,600 (60 × 60) Element Planar Sparse Array Antenna (PSAA)
155(1)
5.6 Conclusions
156(5)
References
156(5)
6 Concentric Ring Sparse Array Antennas
161(44)
6.1 Introduction
161(1)
6.2 Review of the Literature
162(1)
6.3 Types of Circular Sparse Arrays
163(6)
6.3.1 The Array Factor of CRAs
166(3)
6.4 Design Guidelines Framework
169(5)
6.4.1 First Term in (6.14)
170(1)
6.4.2 Maximum of AF
171(1)
6.4.3 Second Term in (6.14)
171(2)
6.4.4 Simplified Version of (6.14)
173(1)
6.4.5 Effect of Rotation
174(1)
6.5 Design Process
174(2)
6.6 Numerical Case Studies
176(19)
6.6.1 A Three-Ring CRA
176(15)
6.6.2 Benchmark Study of CRA with a Larger Aperture
191(4)
6.7 Fractal Concentric Ring Circular Arrays
195(3)
6.7.1 Cantor Fractal Set
196(2)
6.8 Spiral Concentric Ring Circular Arrays
198(7)
References
201(4)
7 Planar Sparse Array Antennas
205(66)
7.1 Introduction
205(1)
7.2 Design Techniques for Sparse Antenna Arrays
206(1)
7.3 Design Fundamentals
207(6)
7.3.1 Mean or Average Distance and Projection Method
208(2)
7.3.2 A Triangular Antenna Array
210(3)
7.4 Array with Random Isotropic Element Allocation
213(7)
7.5 Statistical Density Tapering (SDT) Method
220(5)
7.6 Fractal Engineering Techniques
225(1)
7.7 Hybridization of Statistical Density Tapering and Genetic Algorithm Techniques
226(6)
7.8 PT-Based Deterministic Design Methodology
232(29)
7.8.1 Synthesis of the Spatial Tapering Across the Array Aperture
236(4)
7.8.2 Synthesis of a Taylor-Like Distribution
240(3)
7.8.3 Problem Statement
243(18)
7.9 Conclusions
261(10)
References
262(5)
Appendix 7A Randomization Approach: GeoLocating Method
267(4)
8 Use Cases for Sparse Array Antennas
271(11)
8.1 Introduction
271(1)
8.2 Global Scenario on Sparse Array Antennas
271(2)
8.3 Use Case Studies
273(9)
8.3.1 A Stochastic Technique-Based Low SLL Sparse Array Antenna
273(3)
8.3.2 Multifunctional Dual-Band Sparse Array Antenna
276(6)
8.4 Conclusions
282(1)
References 282(3)
About the Author 285(2)
Index 287