Preface |
|
xvii | |
Acknowledgment |
|
xix | |
1 Introduction |
|
1 | (20) |
|
1.1 Some Famous Equations |
|
|
1 | (1) |
|
|
2 | (1) |
|
|
2 | (2) |
|
1.4 Curvilinear Coordinates |
|
|
4 | (7) |
|
1.4.1 Spherical polar coordinates |
|
|
6 | (3) |
|
1.4.2 Circular cylindrical coordinates |
|
|
9 | (1) |
|
1.4.3 Elliptical cylindrical coordinates |
|
|
10 | (1) |
|
1.5 Solution to the Helmholtz Equation |
|
|
11 | (3) |
|
1.6 What's So Special About Special Functions? |
|
|
14 | (1) |
|
|
14 | (7) |
2 Gamma, Beta, and Error Functions |
|
21 | (24) |
|
|
21 | (11) |
|
|
22 | (1) |
|
2.1.2 Stirling's approximation |
|
|
23 | (2) |
|
2.1.3 Gamma function at some special points |
|
|
25 | (6) |
|
2.1.3.1 Gamma at half integer values |
|
|
25 | (3) |
|
2.1.3.2 Gamma of negative numbers |
|
|
28 | (1) |
|
2.1.3.3 Legendre duplication formula |
|
|
28 | (2) |
|
2.1.3.4 Reflection formula |
|
|
30 | (1) |
|
2.1.4 The incomplete gamma function |
|
|
31 | (1) |
|
|
32 | (1) |
|
|
32 | (5) |
|
2.2.1 Properties of the beta function |
|
|
33 | (2) |
|
2.2.2 Applications of the beta function |
|
|
35 | (2) |
|
|
37 | (8) |
|
2.3.1 Error function and the normal distribution |
|
|
38 | (1) |
|
2.3.2 Error function and the gamma function |
|
|
39 | (1) |
|
2.3.3 Series expansion for the error function |
|
|
39 | (1) |
|
2.3.4 Properties of the error function |
|
|
40 | (1) |
|
2.3.5 Complementary error function |
|
|
40 | (5) |
3 Other Integral Functions |
|
45 | (26) |
|
3.1 Exponential Integrals |
|
|
45 | (3) |
|
3.2 Logarithmic, Sine, and Cosine Integrals |
|
|
48 | (3) |
|
|
51 | (6) |
|
3.3.1 Properties of the delta function |
|
|
53 | (3) |
|
3.3.2 Application of the delta function |
|
|
56 | (1) |
|
|
57 | (1) |
|
|
58 | (8) |
|
|
66 | (5) |
4 Airy Functions |
|
71 | (20) |
|
|
71 | (1) |
|
4.2 Ai(x) and Bi(x) Functions |
|
|
72 | (3) |
|
4.3 Relationship with Bessel Functions |
|
|
75 | (3) |
|
4.4 Asymptotic Behavior of the Airy Function |
|
|
78 | (2) |
|
|
80 | (11) |
|
4.5.1 Intensity near a caustic |
|
|
80 | (2) |
|
|
82 | (4) |
|
4.5.3 Reflection of electromagnetic waves by the ionosphere |
|
|
86 | (2) |
|
4.5.4 Schrodinger equation |
|
|
88 | (2) |
|
4.5.5 Airy functions and the JWKB approximation |
|
|
90 | (1) |
5 Bessel Functions |
|
91 | (42) |
|
|
91 | (1) |
|
5.2 Bessel Function of the First Kind |
|
|
92 | (5) |
|
5.3 Bessel Functions of the Second Kind-Neumann Functions |
|
|
97 | (2) |
|
5.4 Generalized Bessel Differential Equation |
|
|
99 | (1) |
|
5.5 Bessel Functions of the Third Kind-Hankel Functions |
|
|
100 | (2) |
|
5.6 Modified Bessel Functions |
|
|
102 | (2) |
|
|
104 | (1) |
|
5.8 Spherical Bessel Functions |
|
|
105 | (4) |
|
5.9 Generating Function for Bessel Functions |
|
|
109 | (3) |
|
5.10 Integral Relationship of Bessel Functions |
|
|
112 | (5) |
|
5.11 Recurrence Relations of Bessel Functions |
|
|
117 | (3) |
|
5.12 Approximate Formulas |
|
|
120 | (1) |
|
5.13 Bessel-Fourier Series and Orthogonality |
|
|
120 | (3) |
|
|
123 | (6) |
|
5.14.1 Modes of an optical waveguide |
|
|
123 | (3) |
|
5.14.2 The Kaiser-Bessel window |
|
|
126 | (1) |
|
|
127 | (2) |
|
5.15 A Note on Python Coding |
|
|
129 | (2) |
|
|
131 | (2) |
6 Chebyshev Polynomials |
|
133 | (12) |
|
|
133 | (1) |
|
6.2 Definition of Tn(x)and Un(x) |
|
|
133 | (6) |
|
|
139 | (1) |
|
|
140 | (1) |
|
|
140 | (2) |
|
|
142 | (1) |
|
|
143 | (1) |
|
|
144 | (1) |
7 Hermite Polynomials |
|
145 | (26) |
|
|
145 | (1) |
|
7.2 Solution to the Hermite Equation |
|
|
145 | (3) |
|
|
148 | (2) |
|
|
150 | (1) |
|
|
150 | (1) |
|
|
151 | (4) |
|
|
155 | (14) |
|
7.7.1 Quantum mechanical harmonic oscillator |
|
|
155 | (4) |
|
7.7.2 Optical fiber modes with a quadratic index variation |
|
|
159 | (2) |
|
7.7.3 Hermite-Gauss beams |
|
|
161 | (5) |
|
7.7.4 Relativistic Hermite polynomials |
|
|
166 | (1) |
|
7.7.5 Cortical receptive fields and vision |
|
|
167 | (2) |
|
|
169 | (2) |
8 Gegenbauer, Jacobi, and Orthogonal Polynomials |
|
171 | (14) |
|
|
171 | (1) |
|
8.2 Gegenbauer Polynomials |
|
|
171 | (4) |
|
8.2.1 Relationship to other orthogonal polynomials |
|
|
173 | (2) |
|
|
175 | (5) |
|
8.3.1 Relationship to Gegenbauer polynomials |
|
|
176 | (2) |
|
8.3.2 Relationship to other polynomials |
|
|
178 | (2) |
|
8.4 Classical Orthogonal Polynomial Functions and Differential Equation |
|
|
180 | (3) |
|
|
180 | (2) |
|
8.4.2 Alternative forms of the general differential equation |
|
|
182 | (1) |
|
|
183 | (2) |
9 Laguerre Polynomials |
|
185 | (20) |
|
|
185 | (1) |
|
|
185 | (3) |
|
9.3 Generating Function and Recurrence Relations |
|
|
188 | (2) |
|
|
190 | (2) |
|
9.5 Integral Relationships |
|
|
192 | (1) |
|
9.6 Associated Laguerre Polynomials |
|
|
193 | (4) |
|
9.6.1 Generating function |
|
|
194 | (2) |
|
9.6.2 Rodrigues' formula and other relations |
|
|
196 | (1) |
|
|
197 | (1) |
|
|
197 | (6) |
|
|
198 | (2) |
|
9.8.2 Laguerre-Gauss beams |
|
|
200 | (3) |
|
|
203 | (1) |
|
|
203 | (2) |
10 Legendre Functions |
|
205 | (38) |
|
|
205 | (1) |
|
|
205 | (3) |
|
10.3 Generating Function and Recurrence Relations |
|
|
208 | (5) |
|
10.3.1 Legendre polynomials in trigonometric form |
|
|
211 | (2) |
|
|
213 | (1) |
|
10.5 Integral Representation of Legendre Polynomials |
|
|
214 | (3) |
|
|
217 | (2) |
|
10.7 Associated Legendre Functions |
|
|
219 | (2) |
|
10.8 Other Properties of the Associated Legendre Function |
|
|
221 | (1) |
|
|
221 | (1) |
|
10.8.2 Recurrence relations |
|
|
221 | (1) |
|
10.8.3 Integral relationships |
|
|
221 | (1) |
|
|
221 | (12) |
|
|
224 | (1) |
|
10.9.2 Some properties of Y1m(theta,phi) |
|
|
225 | (2) |
|
10.9.3 Spherical harmonics addition theorem |
|
|
227 | (6) |
|
10.10 Vector Spherical Harmonics |
|
|
233 | (4) |
|
|
237 | (4) |
|
10.11.1 Multipole expansions |
|
|
237 | (2) |
|
|
239 | (2) |
|
10.11.3 Computer graphics |
|
|
241 | (1) |
|
|
241 | (2) |
11 Mathieu Functions |
|
243 | (26) |
|
|
243 | (1) |
|
11.2 Elliptical Coordinate System |
|
|
243 | (4) |
|
11.3 Mathieu Differential Equation(s) |
|
|
247 | (1) |
|
11.4 Angular Mathieu Function |
|
|
248 | (1) |
|
|
248 | (1) |
|
|
249 | (1) |
|
11.5 Series Solutions to the Mathieu Equation |
|
|
249 | (3) |
|
11.6 Recurrence Relations and Other Factors |
|
|
252 | (1) |
|
11.7 Evaluation of an and bn |
|
|
253 | (2) |
|
11.8 Modified Mathieu Functions |
|
|
255 | (1) |
|
11.9 List of Relationships and Identities |
|
|
256 | (2) |
|
11.9.1 Relationship to Bessel functions |
|
|
256 | (1) |
|
11.9.2 Modified Mathieu function identities |
|
|
257 | (1) |
|
11.9.3 Asymptotic expansions of the radial Mathieu functions |
|
|
257 | (1) |
|
11.9.4 Some derivative relationships |
|
|
257 | (1) |
|
|
258 | (1) |
|
11.11 A Note on Python Coding |
|
|
258 | (2) |
|
|
260 | (6) |
|
|
260 | (2) |
|
|
262 | (2) |
|
|
264 | (1) |
|
|
264 | (2) |
|
|
266 | (3) |
12 Hypergeometric Functions |
|
269 | (22) |
|
|
269 | (1) |
|
12.2 The Hypergeometric Function: Power Series Solution |
|
|
270 | (1) |
|
|
271 | (1) |
|
12.4 Indicial Equations for Hypergeometric Functions |
|
|
272 | (4) |
|
|
272 | (1) |
|
|
272 | (1) |
|
|
273 | (1) |
|
|
273 | (1) |
|
12.4.3 Case 3: c = 0, ±1, ±2, ±3, ±4... |
|
|
274 | (2) |
|
12.5 Some Properties of Hypergeometric Functions |
|
|
276 | (2) |
|
12.6 Solutions to the Hypergeometric Equation |
|
|
278 | (1) |
|
12.7 The Confluent Hypergeometric Equation |
|
|
279 | (2) |
|
12.8 Some Properties of the Confluent Hypergeometric Function |
|
|
281 | (1) |
|
12.9 Relationship of 2F1 and 1F1 Functions to Other Functions |
|
|
282 | (4) |
|
12.9.1 Relationship to elementary functions |
|
|
282 | (1) |
|
12.9.2 Relationship to special functions |
|
|
283 | (3) |
|
12.10 Asymptotic Expansions |
|
|
286 | (1) |
|
12.11 Whittaker Functions |
|
|
287 | (2) |
|
|
289 | (2) |
13 Integral Transforms |
|
291 | (30) |
|
|
291 | (9) |
|
13.1.1 Appearance of an integral transform |
|
|
292 | (3) |
|
13.1.2 General integral transforms |
|
|
295 | (1) |
|
13.1.3 Some properties of integral transforms |
|
|
296 | (3) |
|
|
299 | (1) |
|
|
300 | (5) |
|
13.2.1 Relationship to Fourier transform |
|
|
302 | (1) |
|
|
303 | (2) |
|
13.2.2.1 Laplace equation |
|
|
303 | (1) |
|
13.2.2.2 Laser propagation |
|
|
304 | (1) |
|
|
305 | (9) |
|
13.3.1 Definitions and basic relationships |
|
|
305 | (3) |
|
13.3.2 Fresnel zone plates |
|
|
308 | (6) |
|
13.3.2.1 Zone plate focus |
|
|
309 | (2) |
|
13.3.2.2 Resolution of Fresnel zone plate |
|
|
311 | (1) |
|
13.3.2.3 Zone plate and source bandwidth |
|
|
312 | (1) |
|
13.3.2.4 Application of Fresnel zone plates |
|
|
313 | (1) |
|
13.3.3 Comparison between the Dirac delta function, the Fourier transform, and the Fresnel transform |
|
|
314 | (1) |
|
|
314 | (6) |
|
|
315 | (1) |
|
13.4.2 Properties of the Wigner function |
|
|
316 | (1) |
|
13.4.3 Some examples of Wigner distribution functions |
|
|
317 | (2) |
|
|
317 | (1) |
|
13.4.3.2 Harmonic function |
|
|
317 | (1) |
|
|
318 | (1) |
|
|
318 | (1) |
|
13.4.3.5 Hermite-Gauss beams |
|
|
318 | (1) |
|
|
319 | (1) |
|
|
319 | (1) |
|
13.4.4.2 Optical aberrations |
|
|
319 | (1) |
|
|
320 | (1) |
14 Zernike Polynomials |
|
321 | (18) |
|
|
321 | (1) |
|
14.2 Description of Zernike Polynomials |
|
|
321 | (4) |
|
|
325 | (1) |
|
14.4 Python Codes for Zernike Polynomials |
|
|
325 | (1) |
|
14.5 Integral Representation and Orthonormality of Zernike Polynomials |
|
|
326 | (1) |
|
14.6 Recurrence Relations and Derivatives |
|
|
327 | (1) |
|
14.7 Relationship to Other Special Functions |
|
|
328 | (3) |
|
14.8 Relationship to Taylor Series and Seidel Aberrations |
|
|
331 | (1) |
|
|
332 | (2) |
|
|
334 | (1) |
|
14.11 Some Advantages of Using Zernike Polynomials |
|
|
334 | (3) |
|
|
337 | (2) |
Appendix A: Series Solution of Differential Equations |
|
339 | (6) |
Appendix B: Python Basics |
|
345 | (16) |
Appendix C: Additional Reading |
|
361 | (4) |
Postscript |
|
365 | (2) |
References |
|
367 | (14) |
Index |
|
381 | |