Muutke küpsiste eelistusi

SPICE 2nd Revised edition [Pehme köide]

(Vice President and Provost, University of Toronto, Canada), (Professor of Electrical Engineering, McGill University, Canada)
  • Formaat: Paperback / softback, 464 pages, kõrgus x laius x paksus: 232x188x21 mm, kaal: 794 g, numerous line figures, tables
  • Sari: The Oxford Series in Electrical and Computer Engineering
  • Ilmumisaeg: 21-Nov-1996
  • Kirjastus: Oxford University Press Inc
  • ISBN-10: 0195108426
  • ISBN-13: 9780195108422
Teised raamatud teemal:
  • Formaat: Paperback / softback, 464 pages, kõrgus x laius x paksus: 232x188x21 mm, kaal: 794 g, numerous line figures, tables
  • Sari: The Oxford Series in Electrical and Computer Engineering
  • Ilmumisaeg: 21-Nov-1996
  • Kirjastus: Oxford University Press Inc
  • ISBN-10: 0195108426
  • ISBN-13: 9780195108422
Teised raamatud teemal:
Today, most, if not at all, microelectronic circuit design is carried out with the aid of a computer-aided circuit analysis program such as SPICE. SPICE, an acronym for Simulation Program with Integrated Circuit Emphasis, is considered by many to be the de-facto industrial standard for computer-aided circuit analysis for microelectronic circuits, mainly because it is used by the majority of IC designers in North America today. It is reasonable to say that to master electronic circuit design, one must also develop a fair amount of expertise in a circuit analysis program such as SPICE. It is therefore our aim in this text to describe how SPICE is used to analyse microelectronic circuits, and more importantly, outline how SPICE is used in the process of design itself. There is a tendency for new designers of electronic circuits to be overwhelmed by the analysis capability of a circuit analysis program such as SPICE, and ignore the thought-process provided by a hand analysis using simple models for the transistors. Experience has shown that this generally leads to poor designs because most of the design effort is spent blindly searching for ways to improve the design using a brute-foce hit-and-miss approach. It is our intention in this book to avoid this pitfall and teach the reader what not to do with SPICE. This is accomplished by keying each example of this text to those presented in Microelectronic Circuits, Third Edition, by Sedra and Smith, where a complete hand analysis is provided. In this way, the insight provided by a hand analysis is readily available to our readers. All examples in this text are also available on-line via the world-wide-web site http://www.macs.ee.mcgill.ca/~roberts/.

Arvustused

"Best we have used!"--Clifford B. Fallon, Washington State University

Preface xi
Introduction to Spice
1(42)
Computer Simulation of Electronic Circuits
1(3)
An Outline of Spice
4(17)
Types of Analysis Performed by Spice
4(1)
Input to Spice
5(12)
Output from Spice
17(4)
Output Postprocessing Using Probe
21(3)
Examples
24(12)
Spice Tips
36(2)
Bibliography
38(1)
Problems
38(5)
Operational Amplifiers
43(32)
Modeling an Ideal Op Amp with Spice
43(1)
Analyzing the Behavior of Ideal Op Amp Circuits
44(14)
Inverting Amplifier
44(2)
The Miller Integrator
46(3)
A Damped Miller Integrator
49(3)
The Unity-Gain Buffer
52(2)
Instrumentation Amplifier
54(4)
Nonideal Op Amp Performance
58(8)
Small-Signal Frequency Response of Op Amp Circuits
59(2)
Modeling the Large-Signal Behavior of Op Amps
61(5)
The Effects of Op Amp Large-Signal Nonidealities on Closed-Loop Behavior
66(6)
DC Transfer Characteristic of an Inverting Amplifier
66(1)
Slew-Rate Limiting
66(5)
Other Op Amp Nonidealities
71(1)
Spice Tips
72(1)
Bibliography
72(1)
Problems
72(3)
Diodes
75(30)
Describing Diodes to Spice
75(3)
Diode Element Description
75(1)
Diode Model Description
76(2)
Spice as a Curve Tracer
78(4)
Extracting the Small-Signal Diode Parameters
81(1)
Temperature Effects
82(1)
Zener Diode Modeling
82(7)
A Half-Wave Rectifier Circuit
89(6)
Limiting and Clamping Circuits
95(5)
A Diode Limiter Circuit
95(1)
A DC Restorer Circuit
96(1)
Voltage Doubler Circuit
97(3)
Spice Tips
100(1)
Problems
101(4)
Bipolar Junction Transistors (BJTs)
105(33)
Describing BJTs to Spice
105(4)
BJT Element Description
105(1)
BJT Model Description
106(2)
Verifying NPN Transistor Circuit Operation
108(1)
Using Spice as a Curve Tracer
109(1)
Spice Analysis of Transistor Circuits at DC
110(7)
Transistor Modes of Operation
112(3)
Computing DC Bias of a pnp Transistor Circuit
115(2)
BJT Transistor Amplifiers
117(4)
BJT Small-Signal Model
118(1)
Single-Stage Voltage-Amplifier Circuits
119(2)
DC Bias Sensitivity Analysis
121(6)
Sensitivity to Component Variations
121(5)
Sensitivity to Temperature Variations
126(1)
The Common-Emitter Amplifier
127(7)
Spice Tips
134(1)
Bibliography
135(1)
Problems
135(3)
Field-Effect Transistors (FETs)
138(63)
Describing MOSFETs to Spice
138(9)
MOSFET Element Description
138(1)
MOSFET Model Description
138(3)
An Enhancement-Mode N-Channel MOSFET Circuit
141(2)
Observing the MOSFET Current-Voltage Characteristics
143(4)
Spice Analysis of MOSFET Circuits at DC
147(8)
An Enhancement-Model P-Channel MOSFET Circuit
147(3)
A Depletion-Mode P-Channel MOSFET Circuit
150(3)
A Depletion-Mode N-Channel MOSFET Circuit
153(2)
Describing JFETs to Spice
155(6)
JFET Element Description
156(1)
JFET Model Description
156(1)
An N-Channel JFET Example
157(4)
FET Amplifier Circuits
161(11)
Effect of Bias Point on Amplifier Conditions
162(1)
Small-Signal Model of the FET
163(5)
A Basic FET Amplifier Circuit
168(4)
Investigating Bias Stability with Spice
172(6)
Integrated-Circuit MOS Amplifiers
178(6)
Enhancement-Load Amplifier Including the Body Effect
178(3)
CMOS Amplifier
181(3)
MOSFET Switches
184(7)
Describing MESFETs to PSpice
191(6)
MESFET Element Description
191(1)
MESFET Model Description
191(2)
Small-Signal MESFET Model
193(1)
A MESFET Biasing Example
194(3)
Spice Tips
197(1)
Bibliography
198(1)
Problems
198(3)
Differential and Multistage Amplifiers
201(32)
Input Excitation for the Differential Pair
201(4)
Small-Signal Analysis of the Differential Amplifier: Symmetric Conditions
205(9)
Small-Signal Analysis of the Differential Amplifier: Asymmetric Conditions
214(4)
Input Offset Voltage
214(2)
Input Bias and Offset Currents
216(2)
Current-Source Biasing in Integrated Circuits
218(2)
A BJT Multistage Amplifier Circuit
220(9)
Spice Tips
229(1)
Bibliography
230(1)
Problems
230(3)
Frequency Response
233(23)
Investigating Transfer Function Behavior Using PSpice
233(1)
Modeling Dynamic Effects in Semiconductor Devices
234(5)
The Low-Frequency Response of the Common-Source Amplifier
239(3)
High-Frequency Response Comparison of the Common-Emitter and Cascode Amplifiers
242(5)
High-Frequency Response of the CC-CE Amplifier
247(5)
Spice Tips
252(1)
Problems
253(3)
Feedback
256(31)
The General Feedback Structure
256(1)
Determining Loop Gain with Spice
257(5)
An Alternative Method
258(4)
Stability Analysis Using Spice
262(8)
Investigating the Range of Amplifier Stability
270(6)
The Effect of Phase Margin on Transient Response
276(2)
Frequency Compensation
278(3)
Spice Tips
281(3)
Bibliography
284(1)
Problems
284(3)
Output Stages and Power Amplifiers
287(16)
Emitter-Follower Output Stage
287(4)
Class B Output Stage
291(8)
Power Conversion Efficiency
291(5)
Transfer Characteristics and a Measure of Linearity
296(3)
Spice Tips
299(1)
Problems
299(4)
Analog Integrated Circuits
303(24)
A Detailed Analysis of the 741 Op Amp Circuit
303(16)
DC Analysis of the 741 Op Amp
304(7)
Gain and Frequency Response of the 741 Op Amp
311(3)
Slew-Rate Limiting of the 741 Op Amp
314(2)
Noise Analysis of the 741 Op Amp
316(1)
A Summary of the 741 Op Amp's Characteristics
317(2)
A CMOS Op Amp
319(5)
Spice Tips
324(1)
Bibliography
325(1)
Problems
325(2)
Filters and Tuned Amplifiers
327(24)
The Butterworth and Chebyshev Transfer Functions
327(3)
Second-Order Active Filters Based on Inductor Replacement
330(2)
Second-Order Active Filters Based on the Two-Integrator-Loop Topology
332(9)
Tuned Amplifiers
341(4)
Spice Tips
345(1)
Bibliography
346(1)
Problems
346(5)
Signal Generators and Waveform-Shaping Circuits
351(30)
Op Amp-RC Sinusoidal Oscillators
351(11)
The Wien Bridge Oscillator
352(5)
An Active Filter-Tuned Oscillator
357(5)
Multivibrator Circuits
362(7)
A Bistable Circuit
362(2)
Generation of a Square Wave Using an Astable Multivibrator
364(3)
The Monostable Multivibrator
367(2)
Precision Rectifier Circuits
369(5)
A Half-Wave Rectifier Circuit
369(4)
A Buffered Peak Detector
373(1)
A Clamping Circuit
374(1)
Spice Tips
374(2)
Bibliography
376(1)
Problems
376(5)
MOS Digital Circuits
381(23)
NMOS Inverter with Enhancement Load
381(9)
Dynamic Operation
384(6)
NMOS Inverter with Depletion Load
390(2)
The CMOS Inverter
392(6)
Dynamic Operation
392(6)
A Gallium-Arsenide Inverter Circuit
398(3)
Spice Tips
401(1)
Problems
401(3)
Bipolar Digital Circuits
404(27)
Transistor--Transistor Logic (TTL)
404(9)
Emitter-Coupled Logic (ECL)
413(10)
BiCMOS Digital Circuits
423(4)
Bibliography
427(1)
Problems
427(4)
Appendix A: Device Model Parameters 431(9)
Appendix B: Spice Options 440(2)
Index 442