Muutke küpsiste eelistusi

Spinor Structures in Geometry & Physics [Kõva köide]

  • Formaat: Hardback, 444 pages, kõrgus x laius: 260x180 mm, kaal: 922 g
  • Ilmumisaeg: 01-Jun-2015
  • Kirjastus: Nova Science Publishers Inc
  • ISBN-10: 1634636252
  • ISBN-13: 9781634636254
  • Formaat: Hardback, 444 pages, kõrgus x laius: 260x180 mm, kaal: 922 g
  • Ilmumisaeg: 01-Jun-2015
  • Kirjastus: Nova Science Publishers Inc
  • ISBN-10: 1634636252
  • ISBN-13: 9781634636254
Preface xi
Acknowledgments xiii
1 Introductory Remarks
1(4)
1.1 The Concept of a Spinor Structure of Physical Space
1(1)
1.2 What should We Expect from the Spinor Structure of the Physical Space
2(3)
2 On the Geometry of Spaces and Spinor Structure
5(30)
2.1 Cartan's Classification for 2-Spinors
5(2)
2.2 Pseudovector Space Π3 and Spatial Spinor ξ
7(2)
2.3 The Vector Space E3 and the Spinor Model E3
9(4)
2.4 Spatial Spinor ξa3 (a1 + ia2) and the Cauchy-Riemann Condition
13(2)
2.5 Calculating δξ and δnξ
15(1)
2.6 Features of the Spinor Field ξ
16(3)
2.7 Spinor η(b3, b1 + ib2) and Cauchy-Riemann non-Analyticity
19(2)
2.8 Continuity Properties of the Spinor η
21(1)
2.9 Comparing the Models ξ and η
22(1)
2.10 Spatial Spinors in Cylindric Parabolic Coordinates
23(6)
2.11 The Spinors ξ and η in Parabolic Coordinates
29(2)
2.12 Spatial Spinors in Spherical Coordinates
31(4)
3 Spinor Structure. Kustaanheimo--Stiefel and Hopf Bundles
35(8)
3.1 Introduction
35(1)
3.2 The Spinor Extension of a Pseudo Vector Space Model
36(1)
3.3 The Spinor Extension of a Vector Space Model
37(2)
3.4 Parabolic Coordinates and Spatial Spinors
39(1)
3.5 The Connection between the Variables Ua and Va
40(3)
4 The Spin Covering for the Full Lorentz Group and the Concept of Fermion Parity
43(10)
4.1 Lorentz Group Theory: History of the Subject
43(3)
4.2 The Spinor Covering of the Total Lorentz Group
46(2)
4.3 Representations of Extended Spinor Groups
48(2)
4.4 Representations of the Coverings for L↑+- and L↑↓+
50(1)
4.5 On Reducing Spinor Groups to a Real Form
51(1)
4.6 Conclusion
52(1)
5 Spinor Space Structure and Solutions of Klein--Fock--Gordon Equation
53(14)
5.1 Parabolic Cylindrical Coordinates
53(2)
5.2 Solutions of the Klein-Fock-Gordon Equation
55(3)
5.3 The Basis Wave Functions and Spinor Space Structure
58(3)
5.4 The Explicit Form of a Diagonalized Operator A
61(1)
5.5 Orthogonality and Completeness of the Basis in Spinor Space
61(2)
5.6 On Matrix Elements in Vector and in Spinor Models
63(1)
5.7 On Schrodinger Particle in Spinor Space
64(1)
5.8 Conclusions
65(2)
6 Fermion in Riemannian Space-Time
67(32)
6.1 The Tetrad Method by Tetrode--Weyl--Fock--Ivanenko
67(3)
6.2 Spinor Gauge Transformations and the (3+1)-Splitting
70(2)
6.3 Spinor Transformations, and the (2 + 2)-Splitting
72(1)
6.4 Examples of Spinor Gauge Transformations
73(2)
6.5 On Bispinor Transformations at Arbitrary Basis
75(2)
6.6 Nonrelativistic Approximation in the Dirac Equation
77(3)
6.7 On Gauge Invariance of the Pauli Equation
80(2)
6.8 Newman--Penrose Coefficients in Spinor Approach
82(3)
6.9 Gauge Transformations
85(2)
6.10 Spin Coefficients in Spherical Tetrad
87(1)
6.11 Dirac Equation in Orthogonal Coordinates and Tetrads
88(2)
6.12 Dirac Equation and Ricci Coefficients
90(2)
6.13 Gauge Properties of the Vectors Ba and Ca
92(1)
6.14 Connection with the Newman--Penrose Formalism
93(3)
6.15 Majorana 4-Spinor Fields in Riemannian Space-Time
96(1)
6.16 Gauge Transformations and Spinor Space Structure
97(2)
7 Polarization Optics and 2-Spinors
99(8)
7.1 Polarization of the Light: General References
99(1)
7.2 Introduction
100(1)
7.3 The Polarization of Light. The Stokes--Mueller Formalism
100(1)
7.4 Jones Complex 2-Dimensional Formalisms
101(6)
8 Polarization Optics and 4-Spinors
107(24)
8.1 4-Spinors and Completely Polarized Light
107(5)
8.2 Stokes 4-Vectors and 4-Tensors. Additional Constraints
112(4)
8.3 4-Spinors and Kustaanheimo-Stiefel Approach
116(1)
8.4 4-spinor Representation for Space-Time Vectors
117(6)
8.5 On Possible Jones 4-Spinors for Partially Polarized Light
123(8)
9 Transitivity for the Lorentz Group and Polarization Optics
131(20)
9.1 On the Lorentz Little Group in Optics
131(2)
9.2 The Transitivity Problem for the Lorentz Group
133(1)
9.3 3-Dimensional Mueller Matrices
134(2)
9.4 On the Construction of Mueller 3-Matrices from Polarization Measurements
136(2)
9.5 Mueller 4-Matrices Relating Two Stokes 4-Vectors
138(4)
9.6 On Determining Mueller Matrices from Polarization Measurements
142(2)
9.7 Transitivity and Diagonalization of Quadratic Forms
144(7)
10 Parameters of Lorentz Matrices and Transitivity in Polarization Optics
151(12)
10.1 On Establishing the Parameters of a Lorentz Matrix
151(4)
10.2 On Identifying Lorentz--Mueller Matrices within the Total Linear Group GL(4,R)
155(1)
10.3 On the Expansion of the Lorentz Matrices in Dirac Basis
156(3)
10.4 On Parameters of Lorentz Matrices and Transitivity
159(4)
11 Factorizations for 3-Rotations and the Polarization of the Light
163(16)
11.1 Introduction
163(1)
11.2 One Special Case for 2-Element Factorization
164(4)
11.3 All the Six 2-Element Factorizations
168(2)
11.4 A Special Case of the 3-Element Factorization
170(6)
11.5 The Six 3-Element Factorizations
176(1)
11.6 The Results
177(2)
12 On the Determining of Mueller Matrices from Polarization Measurements
179(8)
12.1 Setting the Problem
179(2)
12.2 3-Dimensional Mueller Matrices of Rotational Type
181(1)
12.3 4-Dimensional Mueller Matrices of Lorentzian Type
182(5)
13 Elementary Constituents of the Group SL(4, R) and Mueller Matrices
187(30)
13.1 Elementary Constituents of the Group GL(4, R)
187(4)
13.2 On (Pseudo-) Euclidean Rotations of Stokes 4-Vectors
191(4)
13.3 Pseudo-Euclidean Rotations and Partially Polarized Light
195(3)
13.4 Lorentzian Transformations and Completely Polarized Light
198(1)
13.5 On Deformations of the Stokes 4-Vectors
199(2)
13.6 On Other Subgroups of SL(4, R)
201(1)
13.7 The Sixteen 1-Parametric Subgroups in SL(4, R)
201(11)
13.8 Varying the Degree of Polarization of the Light
212(5)
14 Degenerate 4-Dimensional Matrices with Semi-Group Structure
217(48)
14.1 One Independent Vector: Variant I(k)
218(6)
14.2 One Independent Vector: Variant I(m)
224(5)
14.3 One Independent Vector: Variant I(n)
229(3)
14.4 One Independent Vector: Variant I(l)
232(3)
14.5 Two Independent Vectors: Variant II(k,m)
235(9)
14.6 Two Independent Vectors: Variant II(l,n)
244(4)
14.7 Two Independent Vectors: Variant II(k,l)
248(4)
14.8 Two Independent Vectors: Variant I(n,m)
252(1)
14.9 Two Independent Vectors: Variant II(k,n)
252(4)
14.10 Two Independent Vectors: Variant II(m,l)
256(1)
14.11 Three Independent Vectors: Variants I(k,m,n) and I(m,k,l)
256(2)
14.12 Three Independent Vectors: Variants I(n,l,k) and I(n,l,m)
258(3)
14.13 Degenerate Matrices of Rank 3
261(3)
14.14 Concluding Remarks
264(1)
15 Degenerate Mueller Matrices, Semigroups and Projective Geometry
265(64)
15.1 Introduction
265(2)
15.2 One Independent Vector (κ0, k)
267(15)
15.3 One Independent Vector, Variant I(m)
282(7)
15.4 One Independent Vector (n0, n)
289(6)
15.5 One Independent Vector (l0, l)
295(3)
15.6 Two Independent Vectors, Variants II(k,m)
298(7)
15.7 Two Independent Vectors, Variants II(l,n)
305(3)
15.8 Two Independent Vectors II(k,l)
308(2)
15.9 Two Independent Vectors, Variants I(n,m)
310(2)
15.10 Two Independent Vectors, Variants I(k,n)
312(2)
15.11 Two Independent Vectors, Variants I(m,l)
314(2)
15.12 Three Independent Vectors, I(k,m,n)
316(2)
15.13 Three Independent Vectors I(k,m,l)
318(1)
15.14 Three Independent Vectors I(n,l,k)
319(1)
15.15 Three Independent Vectors I(n,l,m)
320(1)
15.16 Degenerate Mueller matrices of rank 3
321(7)
15.17 Conclusion
328(1)
16 Diagonalization of Quadratic Forms and the Mueller Formalism
329(28)
16.1 Diagonalizing the Mueller Quadratic Forms
329(9)
16.2 Particular Variants for the Vanishing Determinant
338(14)
16.3 Some Surfaces of Third Order
352(3)
16.4 Conclusion
355(2)
17 Finsler-Type Structures and Det-Based Classification of Mueller Manifolds
357(22)
17.1 Introduction
357(1)
17.2 Mueller Matrices in Spinorial Representation
358(1)
17.3 Finsler Metrics and KCC Stability
359(4)
17.4 The (h, ν)-model. Einstein Equations
363(2)
17.5 The Vertical Kern RlM Model
365(2)
17.6 The Horizontal Kern RlM Model
367(2)
17.7 Finslerian Det-classification for the Mueller Set
369(4)
17.8 Riemannian KCC-invariants for SO3(R)
373(6)
References 379(34)
Index 413