Muutke küpsiste eelistusi

Spotting and Discovering Terms through Natural Language Processing [Kõva köide]

  • Formaat: Hardback, 357 pages, kõrgus x laius x paksus: 229x178x32 mm, kaal: 816 g, 71 illus.; 71 Illustrations
  • Sari: The MIT Press
  • Ilmumisaeg: 27-Apr-2001
  • Kirjastus: MIT Press
  • ISBN-10: 0262100851
  • ISBN-13: 9780262100854
  • Formaat: Hardback, 357 pages, kõrgus x laius x paksus: 229x178x32 mm, kaal: 816 g, 71 illus.; 71 Illustrations
  • Sari: The MIT Press
  • Ilmumisaeg: 27-Apr-2001
  • Kirjastus: MIT Press
  • ISBN-10: 0262100851
  • ISBN-13: 9780262100854

Christian Jacquemin shows how the power of natural language processing (NLP) can beused to advance text indexing and information retrieval (IR).



In this book Christian Jacquemin shows how the power of natural language processing(NLP) can be used to advance text indexing and information retrieval (IR). Jacquemin's novel tool isFASTR, a parser that normalizes terms and recognizes term variants. Since there are more meanings ina language than there are words, FASTR uses a metagrammar composed of shallow linguistictransformations that describe the morphological, syntactic, semantic, and pragmatic variations ofwords and terms. The acquired parsed terms can then be applied for precise retrieval and assembly ofinformation.The use of a corpus-based unification grammar to define, recognize, and combine termvariants from their base forms allows for intelligent information access to, or "linguistic datatuning" of, heterogeneous texts. FASTR can be used to do automatic controlled indexing, to carry outcontent-based Web searches through conceptually related alternative query formulations, to abstractscientific and technical extracts, and even to translate and collect terms from multilingualmaterial. Jacquemin provides a comprehensive account of the method and implementation of thisinnovative retrieval technique for text processing.

Acknowledgments vii
Introduction
1(8)
Motivation
1(1)
Term Spotting through Term Normalization
1(1)
Is In-depth Understanding a Viable Alternative?
2(1)
Term Variation: A Central Issue
3(3)
Overview of the Study
6(3)
Studies in Term Extraction
9(108)
Basic Concepts and Techniques
9(27)
Term Acquisition
36(34)
Parsers for Phrase Indexing
70(44)
FASTR, Exploiting Term Variation in Term Spotting
114(3)
Terms
117(26)
FASTR Formalism
117(7)
Morphology
124(5)
Extended Domain of Locality and Lexicalization
129(3)
Derivation within FASTR
132(3)
Parsing with FASTR
135(5)
Summary
140(3)
Variations
143(18)
Linguistic Analysis of Term Variations
143(5)
Description of Variations through Metarules
148(10)
A Constructive View of Metarules
158(2)
Summary
160(1)
Experimental Tuning
161(60)
Elementary Variations of Binary Terms
161(10)
Elementary Variations of n-ary Terms
171(15)
Compositions of Elementary Variations
186(10)
Refining Metarules
196(11)
Evaluating Syntactic Metarules
207(10)
Summary
217(4)
Term Enrichment
221(52)
Automatic Thesaurus Acquisition
221(7)
Statistical Acquisition from Variations
228(12)
Term Enrichment from Variations
240(30)
Summary
270(3)
Morphosyntactic Variants
273(24)
Morphological Links and Regular Expressions in FASTR
273(5)
Evaluation of Morphosyntactic Variant Extraction
278(8)
Evaluating Morphosyntactic Metarules
286(7)
Summary
293(4)
Semantic Variation and Applications
297(16)
Semantic Variation
297(8)
Applications
305(3)
Other Interesting Directions
308(5)
Conclusion
313(2)
A Metarule Files 315(18)
Paradigmatic Syntactic Metarules
315(1)
Filtering Syntactic Metarules
315(5)
Paradigmatic Morphosyntactic Metarules
320(1)
Filtering Morphosyntactic Metarules
321(3)
Filtering Semantic and Morphosemantic Metarules
324(6)
Pattern Extractors
330(3)
B Structured Acquisitions 333(4)
C Corpus and Term Lists 337(4)
D Grammar Files 341(2)
Glossary 343(6)
Notes 349(4)
References 353(16)
Author Index 369(4)
Subject Index 373