|
1 Introduction to Modeling and Decision Analysis |
|
|
1 | (15) |
|
|
1 | (2) |
|
The Modeling Approach to Decision Making |
|
|
3 | (1) |
|
Characteristics and Benefits of Modeling |
|
|
3 | (2) |
|
|
5 | (1) |
|
Categories of Mathematical Models |
|
|
6 | (2) |
|
Business Analytics and the Problem-Solving Process |
|
|
8 | (2) |
|
Anchoring and Framing Effects |
|
|
10 | (1) |
|
Good Decisions vs. Good Outcomes |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
12 | (2) |
|
|
14 | (1) |
|
|
14 | (2) |
|
2 Introduction to Optimization and Linear Programming |
|
|
16 | (30) |
|
|
16 | (1) |
|
Applications of Mathematical Optimization |
|
|
17 | (1) |
|
Characteristics of Optimization Problems |
|
|
18 | (1) |
|
Expressing Optimization Problems Mathematically |
|
|
19 | (1) |
|
|
19 | (1) |
|
|
19 | (1) |
|
|
19 | (1) |
|
Mathematical Programming Techniques |
|
|
20 | (1) |
|
|
20 | (1) |
|
|
21 | (1) |
|
Steps in Formulating an LP Model |
|
|
21 | (2) |
|
Summary of the LP Model for the Example Problem |
|
|
23 | (1) |
|
The General Form of an LP Model |
|
|
23 | (1) |
|
Solving LP Problems: An Intuitive Approach |
|
|
24 | (1) |
|
Solving LP Problems: A Graphical Approach |
|
|
25 | (1) |
|
Plotting the First Constraint |
|
|
25 | (1) |
|
Plotting the Second Constraint |
|
|
26 | (1) |
|
Plotting the Third Constraint |
|
|
27 | (1) |
|
|
28 | (2) |
|
Plotting the Objective Function 28 Finding the Optimal Solution Using Level Curves |
|
|
30 | (1) |
|
Finding the Optimal Solution by Enumerating the Corner Points |
|
|
31 | (1) |
|
Summary of Graphical Solution to LP Problems |
|
|
32 | (1) |
|
Understanding How Things Change |
|
|
32 | (1) |
|
Special Conditions in LP Models |
|
|
33 | (1) |
|
Alternate Optimal Solutions |
|
|
33 | (1) |
|
|
34 | (2) |
|
|
36 | (1) |
|
|
37 | (1) |
|
|
38 | (1) |
|
|
38 | (1) |
|
|
39 | (5) |
|
|
44 | (2) |
|
3 Modeling and Solving LP Problems in a Spreadsheet |
|
|
46 | (93) |
|
|
46 | (1) |
|
|
47 | (1) |
|
Solving LP Problems in a Spreadsheet |
|
|
47 | (1) |
|
The Steps in Implementing an LP Model in a Spreadsheet |
|
|
48 | (1) |
|
A Spreadsheet Model for the Blue Ridge Hot Tubs Problem |
|
|
49 | (1) |
|
|
50 | (1) |
|
Representing the Decision Variables |
|
|
50 | (1) |
|
Representing the Objective Function |
|
|
51 | (1) |
|
Representing the Constraints |
|
|
51 | (1) |
|
Representing the Bounds on the Decision Variables |
|
|
52 | (1) |
|
How Solver Views the Model |
|
|
53 | (2) |
|
|
55 | (1) |
|
Defining the Objective Cell |
|
|
56 | (1) |
|
Defining the Variable Cells |
|
|
57 | (1) |
|
Defining the Constraint Cells |
|
|
57 | (3) |
|
Defining the Nonnegativity Conditions |
|
|
60 | (1) |
|
|
61 | (1) |
|
|
62 | (1) |
|
|
63 | (1) |
|
Using Excel's Built-in Solver |
|
|
64 | (1) |
|
Goals and Guidelines for Spreadsheet Design |
|
|
65 | (2) |
|
|
67 | (1) |
|
Defining the Decision Variables |
|
|
68 | (1) |
|
Defining the Objective Function |
|
|
68 | (1) |
|
|
68 | (1) |
|
|
69 | (1) |
|
|
70 | (1) |
|
|
71 | (1) |
|
|
72 | (1) |
|
Defining the Decision Variables |
|
|
72 | (1) |
|
Defining the Objective Function |
|
|
73 | (1) |
|
|
73 | (1) |
|
|
73 | (2) |
|
|
75 | (1) |
|
|
75 | (1) |
|
|
76 | (1) |
|
Defining the Decision Variables |
|
|
77 | (1) |
|
Defining the Objective Function |
|
|
78 | (1) |
|
|
78 | (1) |
|
|
78 | (2) |
|
Heuristic Solution for the Model |
|
|
80 | (1) |
|
|
81 | (1) |
|
|
82 | (1) |
|
|
82 | (1) |
|
Defining the Decision Variables |
|
|
83 | (1) |
|
Defining the Objective Function |
|
|
83 | (1) |
|
|
83 | (1) |
|
Some Observations about Constraints, Reporting, and Scaling |
|
|
84 | (1) |
|
|
85 | (1) |
|
|
86 | (1) |
|
|
87 | (1) |
|
|
87 | (2) |
|
A Production and Inventory Planning Problem |
|
|
89 | (1) |
|
Defining the Decision Variables |
|
|
90 | (1) |
|
Defining the Objective Function |
|
|
90 | (1) |
|
|
90 | (1) |
|
|
91 | (2) |
|
|
93 | (1) |
|
|
94 | (1) |
|
A Multiperiod Cash Flow Problem |
|
|
94 | (1) |
|
Defining the Decision Variables |
|
|
95 | (1) |
|
Defining the Objective Function |
|
|
96 | (1) |
|
|
96 | (2) |
|
|
98 | (2) |
|
|
100 | (1) |
|
|
101 | (1) |
|
Modifying the Taco-Viva Problem to Account for Risk (Optional) |
|
|
102 | (1) |
|
Implementing the Risk Constraints |
|
|
103 | (2) |
|
|
105 | (1) |
|
|
106 | (1) |
|
Data Envelopment Analysis |
|
|
106 | (1) |
|
Defining the Decision Variables |
|
|
107 | (1) |
|
|
107 | (1) |
|
|
107 | (1) |
|
|
108 | (2) |
|
|
110 | (3) |
|
|
113 | (1) |
|
|
114 | (1) |
|
|
115 | (1) |
|
|
116 | (17) |
|
|
133 | (6) |
|
4 Sensitivity Analysis and the Simplex Method |
|
|
139 | (45) |
|
|
139 | (1) |
|
The Purpose of Sensitivity Analysis |
|
|
140 | (1) |
|
Approaches to Sensitivity Analysis |
|
|
140 | (1) |
|
|
141 | (1) |
|
|
142 | (1) |
|
|
143 | (1) |
|
Changes in the Objective Function Coefficients |
|
|
143 | (3) |
|
A Comment about Constancy |
|
|
146 | (1) |
|
Alternate Optimal Solutions |
|
|
146 | (1) |
|
Changes in the RHS Values |
|
|
146 | (1) |
|
Shadow Prices for Nonbinding Constraints |
|
|
147 | (1) |
|
A Note about Shadow Prices |
|
|
147 | (2) |
|
Shadow Prices and the Value of Additional Resources |
|
|
149 | (1) |
|
Other Uses of Shadow Prices |
|
|
149 | (1) |
|
The Meaning of the Reduced Costs |
|
|
150 | (3) |
|
Analyzing Changes in Constraint Coefficients |
|
|
153 | (1) |
|
Simultaneous Changes in Objective Function Coefficients |
|
|
153 | (1) |
|
A Warning about Degeneracy |
|
|
154 | (1) |
|
Ad Hoc Sensitivity Analysis |
|
|
155 | (1) |
|
Creating Spider Plots and Tables |
|
|
155 | (3) |
|
|
158 | (3) |
|
|
161 | (1) |
|
|
161 | (4) |
|
|
165 | (1) |
|
Creating Equality Constraints Using Slack Variables |
|
|
165 | (1) |
|
|
166 | (1) |
|
Finding the Best Solution |
|
|
167 | (1) |
|
|
168 | (1) |
|
|
169 | (1) |
|
|
170 | (8) |
|
|
178 | (6) |
|
|
184 | (58) |
|
|
184 | (1) |
|
The Transshipment Problem |
|
|
184 | (1) |
|
Characteristics of Network Flow Problems |
|
|
185 | (1) |
|
The Decision Variables for Network Flow Problems |
|
|
186 | (1) |
|
The Objective Function for Network Flow Problems |
|
|
187 | (1) |
|
The Constraints for Network Flow Problems |
|
|
187 | (1) |
|
Implementing the Model in a Spreadsheet |
|
|
188 | (2) |
|
|
190 | (2) |
|
The Shortest Path Problem |
|
|
192 | (1) |
|
An LP Model for the Example Problem |
|
|
193 | (1) |
|
The Spreadsheet Model and Solution |
|
|
194 | (1) |
|
Network Flow Models and Integer Solutions |
|
|
195 | (1) |
|
The Equipment Replacement Problem |
|
|
196 | (1) |
|
The Spreadsheet Model and Solution |
|
|
197 | (3) |
|
Transportation/Assignment Problems |
|
|
200 | (1) |
|
Generalized Network Flow Problems |
|
|
201 | (1) |
|
Formulating an LP Model for the Recycling Problem |
|
|
202 | (1) |
|
|
203 | (2) |
|
|
205 | (1) |
|
Generalized Network Flow Problems and Feasibility |
|
|
206 | (3) |
|
|
209 | (1) |
|
An Example of a Maximal Flow Problem |
|
|
209 | (2) |
|
The Spreadsheet Model and Solution |
|
|
211 | (2) |
|
Special Modeling Considerations |
|
|
213 | (3) |
|
Minimal Spanning Tree Problems |
|
|
216 | (1) |
|
An Algorithm for the Minimal Spanning Tree Problem |
|
|
217 | (1) |
|
Solving the Example Problem |
|
|
217 | (1) |
|
|
218 | (1) |
|
|
219 | (1) |
|
|
220 | (16) |
|
|
236 | (6) |
|
6 Integer Linear Programming |
|
|
242 | (79) |
|
|
242 | (1) |
|
|
243 | (1) |
|
|
243 | (2) |
|
Solving the Relaxed Problem |
|
|
245 | (2) |
|
|
247 | (1) |
|
|
247 | (3) |
|
|
250 | (1) |
|
Solving ILP Problems Using Solver |
|
|
250 | (2) |
|
|
252 | (2) |
|
An Employee Scheduling Problem |
|
|
254 | (1) |
|
Defining the Decision Variables |
|
|
255 | (1) |
|
Defining the Objective Function |
|
|
255 | (1) |
|
|
255 | (1) |
|
A Note About the Constraints |
|
|
256 | (1) |
|
|
256 | (2) |
|
|
258 | (1) |
|
|
259 | (1) |
|
|
259 | (1) |
|
A Capital Budgeting Problem |
|
|
259 | (1) |
|
Defining the Decision Variables |
|
|
260 | (1) |
|
Defining the Objective Function |
|
|
260 | (1) |
|
|
260 | (1) |
|
Setting Up the Binary Variables |
|
|
260 | (1) |
|
|
261 | (1) |
|
|
262 | (1) |
|
Comparing the Optimal Solution to a Heuristic Solution |
|
|
262 | (1) |
|
Binary Variables and Logical Conditions |
|
|
263 | (1) |
|
The Line Balancing Problem |
|
|
264 | (1) |
|
Defining the Decision Variables |
|
|
265 | (1) |
|
|
265 | (1) |
|
|
266 | (1) |
|
|
267 | (4) |
|
Analyzing the Solution 270 Extension |
|
|
271 | (2) |
|
|
273 | (1) |
|
Defining the Decision Variables |
|
|
274 | (1) |
|
Defining the Objective Function |
|
|
274 | (1) |
|
|
275 | (1) |
|
Determining Values for "Big M" |
|
|
275 | (1) |
|
|
276 | (1) |
|
|
277 | (1) |
|
|
277 | (2) |
|
A Comment on IF() Functions |
|
|
279 | (1) |
|
Minimum Order/Purchase Size |
|
|
280 | (1) |
|
|
281 | (1) |
|
|
281 | (1) |
|
|
282 | (1) |
|
|
282 | (1) |
|
Formulating the Model: The Objective Function and Transportation Constraints |
|
|
283 | (1) |
|
Implementing the Transportation Constraints |
|
|
284 | (1) |
|
Formulating the Model: The Side Constraints |
|
|
285 | (1) |
|
Implementing the Side Constraints |
|
|
286 | (1) |
|
|
287 | (1) |
|
|
|
|
287 | (2) |
|
The Branch-and-Bound Algorithm (Optional) |
|
|
289 | (1) |
|
|
289 | (2) |
|
|
291 | (1) |
|
|
292 | (1) |
|
|
292 | (1) |
|
|
293 | (2) |
|
|
295 | (1) |
|
|
295 | (1) |
|
|
296 | (20) |
|
|
316 | (5) |
|
7 Goal Programming and Multiple Objective Optimization |
|
|
321 | (44) |
|
|
321 | (1) |
|
|
322 | (1) |
|
A Goal Programming Example |
|
|
323 | (1) |
|
Defining the Decision Variables |
|
|
323 | (1) |
|
|
323 | (1) |
|
Defining the Goal Constraints |
|
|
323 | (1) |
|
Defining the Hard Constraints |
|
|
324 | (1) |
|
|
325 | (1) |
|
|
326 | (1) |
|
|
327 | (1) |
|
|
328 | (1) |
|
|
329 | (1) |
|
|
329 | (1) |
|
Trade-offs: The Nature of GP |
|
|
330 | (2) |
|
Comments about Goal Programming |
|
|
332 | (1) |
|
Multiple Objective Optimization |
|
|
333 | (1) |
|
|
334 | (1) |
|
Defining the Decision Variables |
|
|
335 | (1) |
|
|
335 | (1) |
|
|
335 | (1) |
|
|
336 | (1) |
|
Determining Target Values for the Objectives |
|
|
337 | (2) |
|
Summarizing the Target Solutions |
|
|
339 | (1) |
|
Determining a GP Objective |
|
|
340 | (1) |
|
|
341 | (1) |
|
Implementing the Revised Model |
|
|
342 | (1) |
|
|
343 | (1) |
|
|
344 | (2) |
|
|
346 | (1) |
|
|
346 | (1) |
|
|
347 | (12) |
|
|
359 | (6) |
|
8 Nonlinear Programming and Evolutionary Optimization |
|
|
365 | (74) |
|
|
365 | (1) |
|
The Nature of NLP Problems |
|
|
366 | (1) |
|
Solution Strategies for NLP Problems |
|
|
367 | (1) |
|
Local vs. Global Optimal Solutions |
|
|
368 | (3) |
|
Economic Order Quantity Models |
|
|
371 | (2) |
|
|
373 | (1) |
|
|
373 | (2) |
|
|
375 | (1) |
|
Comments on the EOQ Model |
|
|
375 | (1) |
|
|
376 | (1) |
|
Defining the Decision Variables |
|
|
376 | (1) |
|
|
377 | (1) |
|
|
378 | (1) |
|
|
378 | (1) |
|
Solving the Model and Analyzing the Solution |
|
|
379 | (1) |
|
Another Solution to the Problem |
|
|
380 | (2) |
|
Some Comments about the Solution to Location Problems |
|
|
382 | (1) |
|
Nonlinear Network Flow Problem |
|
|
382 | (1) |
|
Defining the Decision Variables |
|
|
382 | (1) |
|
|
382 | (1) |
|
|
383 | (1) |
|
|
384 | (1) |
|
Solving the Model and Analyzing the Solution |
|
|
385 | (2) |
|
Project Selection Problems |
|
|
387 | (1) |
|
Defining the Decision Variables |
|
|
387 | (1) |
|
Defining the Objective Function |
|
|
388 | (1) |
|
|
388 | (1) |
|
|
389 | (1) |
|
|
390 | (1) |
|
Optimizing Existing Financial Spreadsheet Models |
|
|
391 | (1) |
|
|
392 | (1) |
|
Optimizing the Spreadsheet Model |
|
|
393 | (1) |
|
|
393 | (1) |
|
Comments on Optimizing Existing Spreadsheets |
|
|
394 | (1) |
|
The Portfolio Selection Problem |
|
|
395 | (1) |
|
Defining the Decision Variables |
|
|
396 | (1) |
|
|
397 | (1) |
|
|
397 | (1) |
|
|
398 | (2) |
|
|
400 | (2) |
|
Handling Conflicting Objectives in Portfolio Problems |
|
|
402 | (1) |
|
|
403 | (3) |
|
|
406 | (1) |
|
|
406 | (1) |
|
Solver Options for Solving NLPs |
|
|
406 | (2) |
|
|
408 | (1) |
|
|
409 | (1) |
|
A Spreadsheet Model for the Problem |
|
|
410 | (1) |
|
|
411 | (1) |
|
|
412 | (1) |
|
The Traveling Salesperson Problem |
|
|
412 | (1) |
|
A Spreadsheet Model for the Problem |
|
|
413 | (2) |
|
|
415 | (1) |
|
|
415 | (1) |
|
|
416 | (1) |
|
|
417 | (1) |
|
|
418 | (16) |
|
|
434 | (5) |
|
|
439 | (52) |
|
|
439 | (1) |
|
|
440 | (2) |
|
|
442 | (1) |
|
Simple Linear Regression Analysis |
|
|
443 | (1) |
|
|
444 | (1) |
|
Solving the Problem Using Solver |
|
|
444 | (3) |
|
Solving the Problem Using the Regression Tool |
|
|
447 | (2) |
|
|
449 | (2) |
|
|
451 | (1) |
|
|
452 | (1) |
|
|
453 | (1) |
|
Prediction Intervals for New Values of Y |
|
|
453 | (3) |
|
Confidence Intervals for Mean Values of Y |
|
|
456 | (1) |
|
|
456 | (1) |
|
Statistical Tests for Population Parameters |
|
|
456 | (1) |
|
|
457 | (1) |
|
Assumptions for the Statistical Tests |
|
|
457 | (3) |
|
|
460 | (1) |
|
Introduction to Multiple Regression |
|
|
460 | (1) |
|
A Multiple Regression Example |
|
|
461 | (1) |
|
|
462 | (1) |
|
Models with One Independent Variable |
|
|
463 | (1) |
|
Models with Two Independent Variables |
|
|
464 | (2) |
|
|
466 | (1) |
|
The Adjusted-R2 Statistic |
|
|
466 | (1) |
|
The Best Model with Two Independent Variables |
|
|
467 | (1) |
|
|
467 | (1) |
|
The Model with Three Independent Variables |
|
|
467 | (1) |
|
|
468 | (1) |
|
Other Model Selection Issues |
|
|
469 | (1) |
|
Binary Independent Variables |
|
|
470 | (1) |
|
Statistical Tests for the Population Parameters |
|
|
471 | (1) |
|
|
472 | (1) |
|
Expressing Nonlinear Relationships Using Linear Models |
|
|
472 | (5) |
|
Summary of Nonlinear Regression |
|
|
477 | (1) |
|
|
477 | (1) |
|
|
477 | (1) |
|
|
478 | (9) |
|
|
487 | (4) |
|
|
491 | (60) |
|
|
491 | (1) |
|
|
492 | (2) |
|
|
494 | (1) |
|
|
495 | (7) |
|
Classification Data Partitioning |
|
|
502 | (2) |
|
|
504 | (2) |
|
Discriminant Analysis Example |
|
|
506 | (5) |
|
|
511 | (2) |
|
Logistic Regression Example |
|
|
513 | (3) |
|
|
516 | (1) |
|
K-Nearest Neighbor Example |
|
|
517 | (2) |
|
|
519 | (2) |
|
Classification Tree Example |
|
|
521 | (3) |
|
|
524 | (2) |
|
|
526 | (2) |
|
|
528 | (2) |
|
|
530 | (4) |
|
Comments on Classification |
|
|
534 | (1) |
|
Combining Classifications with Ensemble Methods |
|
|
534 | (1) |
|
|
534 | (1) |
|
|
534 | (1) |
|
Association Rules (Affinity Analysis) |
|
|
535 | (2) |
|
Association Rules Example |
|
|
537 | (1) |
|
|
538 | (1) |
|
|
539 | (1) |
|
K-Mean Clustering Example |
|
|
540 | (2) |
|
Hierarchical Clustering Example |
|
|
542 | (2) |
|
|
544 | (1) |
|
|
544 | (1) |
|
|
545 | (1) |
|
|
546 | (3) |
|
|
549 | (2) |
|
11 Time Series Forecasting |
|
|
551 | (69) |
|
|
551 | (1) |
|
|
552 | (1) |
|
|
553 | (1) |
|
|
553 | (2) |
|
|
555 | (1) |
|
Forecasting with the Moving Average Model |
|
|
556 | (1) |
|
|
557 | (3) |
|
Forecasting with the Weighted Moving Average Model |
|
|
560 | (1) |
|
|
560 | (1) |
|
Forecasting with the Exponential Smoothing Model |
|
|
561 | (2) |
|
|
563 | (1) |
|
Stationary Data with Additive Seasonal Effects |
|
|
564 | (4) |
|
Forecasting with the Model |
|
|
568 | (1) |
|
Stationary Data with Multiplicative Seasonal Effects |
|
|
569 | (2) |
|
Forecasting with the Model |
|
|
571 | (1) |
|
|
572 | (1) |
|
|
573 | (1) |
|
|
574 | (1) |
|
Forecasting with the Model |
|
|
575 | (1) |
|
Double Exponential Smoothing (Holt's Method) |
|
|
576 | (4) |
|
Forecasting with Holt's Method |
|
|
580 | (1) |
|
Holt-Winter's Method for Additive Seasonal Effects |
|
|
580 | (4) |
|
Forecasting with Holt-Winter's Additive Method |
|
|
584 | (1) |
|
Holt-Winter's Method for Multiplicative Seasonal Effects |
|
|
584 | (4) |
|
Forecasting with Holt-Winter's Multiplicative Method |
|
|
588 | (1) |
|
Modeling Time Series Trends Using Regression |
|
|
588 | (1) |
|
|
589 | (2) |
|
Forecasting with the Linear Trend Model |
|
|
591 | (1) |
|
|
592 | (1) |
|
Forecasting with the Quadratic Trend Model |
|
|
592 | (2) |
|
Modeling Seasonality with Regression Models |
|
|
594 | (1) |
|
Adjusting Trend Predictions with Seasonal Indices |
|
|
594 | (1) |
|
Computing Seasonal Indices |
|
|
595 | (2) |
|
Forecasting with Seasonal Indices |
|
|
597 | (1) |
|
Refining the Seasonal Indices |
|
|
598 | (2) |
|
Seasonal Regression Models |
|
|
600 | (1) |
|
|
601 | (3) |
|
Forecasting with the Seasonal Regression Model |
|
|
604 | (1) |
|
|
604 | (1) |
|
|
605 | (1) |
|
|
605 | (1) |
|
|
606 | (10) |
|
|
616 | (4) |
|
12 Introduction to Simulation Using Analytic Solver |
|
|
620 | (82) |
|
|
620 | (1) |
|
Random Variables and Risk |
|
|
621 | (1) |
|
|
621 | (1) |
|
|
622 | (1) |
|
Best-Case/Worst-Case Analysis |
|
|
622 | (1) |
|
|
623 | (1) |
|
|
624 | (1) |
|
A Corporate Health Insurance Example |
|
|
624 | (1) |
|
A Critique of the Base Case Model |
|
|
625 | (1) |
|
Spreadsheet Simulation Using Analytic Solver |
|
|
626 | (1) |
|
|
627 | (1) |
|
|
627 | (3) |
|
Discrete vs. Continuous Random Variables |
|
|
630 | (1) |
|
Preparing the Model for Simulation |
|
|
630 | (2) |
|
|
632 | (2) |
|
|
634 | (1) |
|
Selecting the Output Cells to Track |
|
|
634 | (1) |
|
Selecting the Number of Replications |
|
|
635 | (1) |
|
Selecting What Gets Displayed on the Worksheet |
|
|
636 | (1) |
|
|
636 | (1) |
|
|
637 | (1) |
|
The Best Case and the Worst Case |
|
|
638 | (1) |
|
The Frequency Distribution of the Output Cells |
|
|
638 | (1) |
|
The Cumulative Distribution of the Output Cells |
|
|
639 | (1) |
|
Obtaining Other Cumulative Probabilities |
|
|
640 | (1) |
|
|
640 | (1) |
|
The Uncertainty of Sampling |
|
|
641 | (1) |
|
Constructing a Confidence Interval for the True Population Mean |
|
|
642 | (1) |
|
Constructing a Confidence Interval for a Population Proportion |
|
|
643 | (1) |
|
Sample Sizes and Confidence Interval Widths |
|
|
644 | (1) |
|
|
644 | (2) |
|
The Benefits of Simulation |
|
|
646 | (1) |
|
Additional Uses of Simulation |
|
|
647 | (1) |
|
A Reservation Management Example |
|
|
647 | (1) |
|
|
647 | (2) |
|
Details for Multiple Simulations |
|
|
649 | (1) |
|
|
649 | (1) |
|
|
650 | (2) |
|
An Inventory Control Example |
|
|
652 | (1) |
|
|
653 | (1) |
|
|
654 | (3) |
|
|
657 | (1) |
|
|
658 | (7) |
|
|
665 | (1) |
|
|
666 | (2) |
|
A Project Selection Example |
|
|
668 | (1) |
|
|
668 | (1) |
|
Solving and Analyzing the Problem with Analytic Solver |
|
|
669 | (2) |
|
Considering Another Solution |
|
|
671 | (2) |
|
A Portfolio Optimization Example |
|
|
673 | (1) |
|
|
674 | (2) |
|
Solving the Problem with Analytic Solver |
|
|
676 | (2) |
|
|
678 | (1) |
|
|
679 | (1) |
|
|
680 | (13) |
|
|
693 | (9) |
|
|
702 | (31) |
|
|
702 | (1) |
|
The Purpose of Queuing Models |
|
|
703 | (1) |
|
Queuing System Configurations |
|
|
704 | (1) |
|
Characteristics of Queuing Systems |
|
|
705 | (1) |
|
|
705 | (1) |
|
|
706 | (2) |
|
|
708 | (1) |
|
|
708 | (2) |
|
|
710 | (1) |
|
|
710 | (1) |
|
|
710 | (2) |
|
|
712 | (1) |
|
|
712 | (1) |
|
The M/M/s Model with Finite Queue Length |
|
|
713 | (1) |
|
|
714 | (1) |
|
|
714 | (1) |
|
The M/M/s Model with Finite Population |
|
|
715 | (1) |
|
|
716 | (1) |
|
|
716 | (2) |
|
|
718 | (1) |
|
|
719 | (1) |
|
|
719 | (1) |
|
Adding the Automated Dispensing Device |
|
|
720 | (2) |
|
|
722 | (1) |
|
Simulating Queues and the Steady-State Assumption |
|
|
722 | (1) |
|
|
723 | (1) |
|
|
723 | (2) |
|
|
725 | (6) |
|
|
731 | (2) |
|
|
733 | (74) |
|
|
733 | (1) |
|
Good Decisions vs. Good Outcomes |
|
|
734 | (1) |
|
Characteristics of Decision Problems |
|
|
734 | (1) |
|
|
735 | (1) |
|
|
736 | (1) |
|
|
736 | (1) |
|
|
736 | (1) |
|
|
737 | (1) |
|
|
738 | (1) |
|
|
738 | (1) |
|
The Maximax Decision Rule |
|
|
738 | (1) |
|
The Maximin Decision Rule |
|
|
739 | (1) |
|
The Minimax Regret Decision Rule |
|
|
740 | (2) |
|
|
742 | (1) |
|
|
742 | (2) |
|
|
744 | (1) |
|
|
744 | (2) |
|
The Expected Value of Perfect Information |
|
|
746 | (2) |
|
|
748 | (1) |
|
Rolling Back a Decision Tree |
|
|
749 | (2) |
|
Creating Decision Trees with Analytic Solver |
|
|
751 | (1) |
|
|
752 | (3) |
|
Determining the Payoffs and EMVs |
|
|
755 | (1) |
|
|
755 | (1) |
|
Multistage Decision Problems |
|
|
756 | (1) |
|
A Multistage Decision Tree |
|
|
757 | (1) |
|
Developing a Risk Profile |
|
|
758 | (1) |
|
|
759 | (1) |
|
|
760 | (3) |
|
|
763 | (2) |
|
|
765 | (2) |
|
Using Sample Information in Decision Making |
|
|
767 | (1) |
|
Conditional Probabilities |
|
|
768 | (1) |
|
The Expected Value of Sample Information |
|
|
769 | (1) |
|
Computing Conditional Probabilities |
|
|
770 | (2) |
|
|
772 | (1) |
|
|
772 | (1) |
|
|
773 | (1) |
|
Constructing Utility Functions |
|
|
773 | (3) |
|
Using Utilities to Make Decisions |
|
|
776 | (1) |
|
The Exponential Utility Function |
|
|
777 | (1) |
|
Incorporating Utilities in Decision Trees |
|
|
778 | (2) |
|
Multicriteria Decision Making |
|
|
780 | (1) |
|
The Multicriteria Scoring Model |
|
|
780 | (3) |
|
The Analytic Hierarchy Process |
|
|
783 | (1) |
|
|
784 | (1) |
|
Normalizing the Comparisons |
|
|
785 | (1) |
|
|
786 | (1) |
|
Obtaining Scores for the Remaining Criteria |
|
|
787 | (1) |
|
Obtaining Criterion Weights |
|
|
788 | (1) |
|
Implementing the Scoring Model |
|
|
789 | (1) |
|
|
789 | (1) |
|
|
790 | (1) |
|
|
791 | (11) |
|
|
802 | (5) |
|
|
807 | (50) |
|
|
807 | (1) |
|
|
808 | (1) |
|
Creating the Project Network |
|
|
808 | (2) |
|
|
810 | (1) |
|
|
811 | (1) |
|
|
812 | (2) |
|
|
814 | (2) |
|
Determining the Critical Path |
|
|
816 | (2) |
|
|
818 | (1) |
|
Project Management Using Spreadsheets |
|
|
818 | (4) |
|
Important Implementation Issue |
|
|
822 | (1) |
|
|
823 | (2) |
|
|
825 | (1) |
|
An LP Approach to Crashing |
|
|
826 | (1) |
|
Determining the Earliest Crash Completion Time |
|
|
827 | (1) |
|
|
828 | (1) |
|
|
829 | (1) |
|
Determining a Least Costly Crash Schedule |
|
|
830 | (1) |
|
|
831 | (1) |
|
|
832 | (3) |
|
The Problems with PERT 833 Implications |
|
|
835 | (1) |
|
Simulating Project Networks |
|
|
835 | (1) |
|
|
836 | (1) |
|
Generating Random Activity Times |
|
|
836 | (1) |
|
|
837 | (1) |
|
|
838 | (1) |
|
|
839 | (1) |
|
|
840 | (2) |
|
|
842 | (1) |
|
|
843 | (1) |
|
|
844 | (10) |
|
|
854 | (3) |
Index |
|
857 | |