Muutke küpsiste eelistusi

Stability of Heat Kernel Estimates for Symmetric Non-Local Dirichlet Forms [Pehme köide]

  • Formaat: Paperback / softback, 87 pages, kõrgus x laius: 254x178 mm, kaal: 195 g
  • Sari: Memoirs of the American Mathematical Society
  • Ilmumisaeg: 30-Nov-2021
  • Kirjastus: American Mathematical Society
  • ISBN-10: 1470448637
  • ISBN-13: 9781470448639
Teised raamatud teemal:
  • Formaat: Paperback / softback, 87 pages, kõrgus x laius: 254x178 mm, kaal: 195 g
  • Sari: Memoirs of the American Mathematical Society
  • Ilmumisaeg: 30-Nov-2021
  • Kirjastus: American Mathematical Society
  • ISBN-10: 1470448637
  • ISBN-13: 9781470448639
Teised raamatud teemal:
Chen, Kumagai, and Wang consider symmetric jump processes of mixed-type on metric measure spaces under general volume doubling conditions, and establish the stability of two-sided heat kernel estimates and heat kernel upper bounds. They obtain the stable equivalent characterizations in terms of the jumping kernels, variants of cut-off Sobolev inequalities, and the Faber-Krahn inequalities. In particular, they establish the stability of heat kernel estimates for a-stable-like processes even with a equal to or larger than 2 when the underlying spaces have walk dimensions larger than 2, which has been one of the major open problems in this area. Annotation ©2021 Ringgold, Inc., Portland, OR (protoview.com)
Zhen-Qing Chen, University of Washington, Seattle, WA.

Takashi Kumagai, Kyoto University, Japan.

Jian Wang, Fujian Normal University, Fuzhou, China.