Muutke küpsiste eelistusi

On the Stability of Type I Blow Up for the Energy Super Critical Heat Equation [Pehme köide]

  • Formaat: Paperback / softback, 93 pages, kõrgus x laius: 254x178 mm, kaal: 209 g
  • Sari: Memoirs of the American Mathematical Society
  • Ilmumisaeg: 30-Oct-2019
  • Kirjastus: American Mathematical Society
  • ISBN-10: 1470436264
  • ISBN-13: 9781470436261
Teised raamatud teemal:
  • Pehme köide
  • Hind: 107,20 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 93 pages, kõrgus x laius: 254x178 mm, kaal: 209 g
  • Sari: Memoirs of the American Mathematical Society
  • Ilmumisaeg: 30-Oct-2019
  • Kirjastus: American Mathematical Society
  • ISBN-10: 1470436264
  • ISBN-13: 9781470436261
Teised raamatud teemal:
In order to consider an energy super-critical semi-linear heat equation, Collot, Raphael, and Szeftel first revisit the construction of radially symmetric self-similar solutions performed through an ode approach (Troy, 1987 and Budd and Qi, 1989) and propose a bifurcation type argument (Biernat and Bizon, 2011) that allows for a sharp control of the spectrum of the corresponding linearized operator in suitable weighted spaces. Then they show how the sole knowledge of this spectral gap in weighted spaces implies the finite co-dimensional non-radial stability of these solutions for smooth well localized initial data using energy bounds. As a whole, they say, the scheme draws a route map for deriving the existence and stability of self-similar blow up in non-radial energy super-critical settings. Annotation ©2019 Ringgold, Inc., Portland, OR (protoview.com)
Introduction
Construction of self-similar profiles
Spectral gap in weighted norms
Dynamical control of the flow
Appendix A. Coercivity estimates
Appendix B. Proof of (6.7)
Appendix C. Proof of Lemma 2.1
Appendix D. Proof of Lemma 2.2
Bibliography.
Charles Collot, Universite de Nice-Sophia Antipolis, France.

Pierre Raphael, Universite de Nice-Sophia Antipolis, France.

Jeremie Szeftel, Universite Paris 6, France.