Muutke küpsiste eelistusi

Stata Multiple-imputation Reference Manual: Release 12

  • Formaat: 365 pages
  • Ilmumisaeg: 30-Jun-2011
  • Kirjastus: Statacorp Lp
  • ISBN-10: 1597180890
  • ISBN-13: 9781597180894
Teised raamatud teemal:
  • Formaat: 365 pages
  • Ilmumisaeg: 30-Jun-2011
  • Kirjastus: Statacorp Lp
  • ISBN-10: 1597180890
  • ISBN-13: 9781597180894
Teised raamatud teemal:
intro substantive---Introduction to multiple-imputation analysis
1(14)
intro---Introduction to mi
15(8)
estimation---Estimation commands for use with mi estimate
23(3)
mi add---Add imputations from another mi dataset
26(3)
mi append---Append mi data
29(3)
mi convert---Change style of mi data
32(3)
mi copy---Copy mi flongsep data
35(2)
mi describe---Describe mi data
37(4)
mi erase---Erase mi datasets
41(1)
mi estimate---Estimation using multiple imputations
42(27)
mi estimate using---Estimation using previously saved estimation results
69(8)
mi estimate postestimation---Postestimation tools for mi estimate
77(2)
mi expand---Expand mi data
79(1)
mi export---Export mi data
80(1)
mi export ice---Export mi data to ice format
81(2)
mi export nhanes l---Export mi data to NHANES format
83(3)
mi extract---Extract original or imputed data from mi data
86(2)
mi import---Import data into mi
88(3)
mi import flong---Import flong-like data into mi
91(3)
mi import flongsep---Import flongsep-like data into mi
94(4)
mi import ice---Import ice-format data into mi
98(4)
mi import nhanesl---Import NHANES-format data into mi
102(5)
mi import wide---Import wide-like data into mi
107(3)
mi impute---Impute missing values
110(25)
mi impute chained---Impute missing values using chained equations
135(27)
mi impute intreg---Impute using interval regression
162(9)
mi impute logit---Impute using logistic regression
171(5)
mi impute mlogit---Impute using multinomial logistic regression
176(5)
mi impute monotone---Impute missing values in monotone data
181(17)
mi impute mvn---Impute using multivariate normal regression
198(26)
mi impute nbreg---Impute using negative binomial regression
224(5)
mi impute ologit---Impute using ordered logistic regression
229(5)
mi impute pmm---Impute using predictive mean matching
234(6)
mi impute poisson---Impute using Poisson regression
240(5)
mi impute regress---Impute using linear regression
245(6)
mi impute truncreg---Impute using truncated regression
251(6)
mi merge---Merge mi data
257(4)
mi misstable---Tabulate pattern of missing values
261(2)
mi passive---Generate/replace and register passive variables
263(5)
mi predict---Obtain multiple-imputation predictions
268(14)
mi ptrace---Load parameter-trace file into Stata
282(3)
mi rename---Rename variable
285(3)
mi replace0---Replace original data
288(2)
mi reset---Reset imputed or passive variables
290(2)
mi reshape---Reshape mi data
292(2)
mi select---Programmer's alternative to mi extract
294(2)
mi set---Declare multiple-imputation data
296(4)
mi stsplit---Stsplit and stjoin mi data
300(2)
mi test---Test hypotheses after mi estimate
302(8)
mi update---Ensure that mi data are consistent
310(3)
mi varying---Identify variables that vary across imputations
313(3)
mi xeq---Execute command(s) on individual imputations
316(3)
mi XXXset---Declare mi data to be svy, st, ts, xt, etc.
319(2)
noupdate option---The noupdate option
321(2)
styles---Dataset styles
323(8)
technical---Details for programmers
331(12)
workflow---Suggested workflow
343(10)
Glossary 353(6)
Subject and author index 359