List of Figures |
|
xi | |
List of Tables |
|
xiii | |
Preface |
|
xv | |
Authors |
|
xvii | |
1 Introduction |
|
1 | (18) |
|
1.1 Stated preference methods and the role of R |
|
|
1 | (3) |
|
1.2 Objective of this book |
|
|
4 | (2) |
|
1.3 Overview of CV, DCEs, and BWS |
|
|
6 | (4) |
|
1.3.1 Contingent valuation |
|
|
6 | (1) |
|
1.3.2 Discrete choice experiments |
|
|
7 | (1) |
|
|
8 | (2) |
|
1.4 Random utility theory and discrete choice models |
|
|
10 | (5) |
|
1.4.1 Random utility theory |
|
|
10 | (1) |
|
1.4.2 Discrete choice models |
|
|
11 | (4) |
|
1.5 Summary of the rest of this book |
|
|
15 | (4) |
2 Contingent Valuation |
|
19 | (50) |
|
|
19 | (2) |
|
2.2 Overview of contingent valuation |
|
|
21 | (11) |
|
2.2.1 Elicitation formats |
|
|
21 | (1) |
|
|
22 | (1) |
|
2.2.3 Parametric estimation method |
|
|
23 | (6) |
|
2.2.4 Nonparametric estimation method |
|
|
29 | (3) |
|
2.3 An R package for analyzing SBDC and DBDC CV data |
|
|
32 | (7) |
|
2.3.1 Overview of package DCchoice |
|
|
32 | (1) |
|
2.3.2 Installing the DCchoice package |
|
|
33 | (1) |
|
2.3.3 Loading the package |
|
|
33 | (1) |
|
|
34 | (1) |
|
|
35 | (4) |
|
2.4 Parametric estimation of WTP |
|
|
39 | (13) |
|
2.4.1 Estimating WTP with SBDC data |
|
|
39 | (5) |
|
2.4.2 Estimating WTP with DBDC data |
|
|
44 | (6) |
|
2.4.3 Constructing confidence intervals |
|
|
50 | (2) |
|
2.5 Nonparametric estimation of WTP |
|
|
52 | (12) |
|
2.5.1 Kristrom's nonparametric estimation of SBDC data |
|
|
52 | (7) |
|
2.5.2 Kaplan-Meier-Turnbull estimation of SBDC data |
|
|
59 | (2) |
|
2.5.3 Kaplan-Meier-Turnbull estimation of DBDC data |
|
|
61 | (3) |
|
|
64 | (1) |
|
|
65 | (4) |
3 Discrete Choice Experiments |
|
69 | (64) |
|
|
69 | (2) |
|
|
71 | (9) |
|
3.2.1 Basic terms used in DCEs |
|
|
71 | (4) |
|
3.2.2 Steps for implementing DCEs |
|
|
75 | (5) |
|
|
80 | (20) |
|
|
80 | (1) |
|
3.3.2 Creating a DCE design |
|
|
81 | (4) |
|
3.3.3 Converting a DCE design into questionnaire format |
|
|
85 | (2) |
|
3.3.4 Creating a design matrix |
|
|
87 | (3) |
|
|
90 | (4) |
|
3.3.6 Conducting statistical analysis |
|
|
94 | (2) |
|
3.3.7 Calculating goodness-of-fit measures |
|
|
96 | (1) |
|
|
97 | (2) |
|
3.3.9 Testing the difference between two independent MWTP distributions |
|
|
99 | (1) |
|
|
100 | (30) |
|
3.4.1 Unlabeled DCE example |
|
|
101 | (7) |
|
3.4.2 Labeled design example |
|
|
108 | (9) |
|
|
117 | (13) |
|
|
130 | (3) |
4 Best-Worst Scaling |
|
133 | (44) |
|
|
133 | (2) |
|
|
135 | (9) |
|
|
135 | (2) |
|
|
137 | (7) |
|
|
144 | (13) |
|
|
144 | (1) |
|
4.3.2 Constructing choice sets |
|
|
144 | (3) |
|
4.3.3 Preparing BWS questions |
|
|
147 | (1) |
|
4.3.4 Creating the dataset |
|
|
148 | (6) |
|
4.3.5 Analyzing responses using the counting approach |
|
|
154 | (2) |
|
4.3.6 Analyzing responses using the modeling approach |
|
|
156 | (1) |
|
|
157 | (15) |
|
4.4.1 BWS based on a two-level OMED |
|
|
157 | (8) |
|
4.4.2 BWS based on a BIBD |
|
|
165 | (7) |
|
|
172 | (1) |
|
4.A Appendix: Profile case BWS and multiprofile case BWS |
|
|
172 | (5) |
|
|
172 | (2) |
|
4.A.2 Multiprofile case BWS |
|
|
174 | (3) |
5 Basic Operations in R |
|
177 | (26) |
|
|
177 | (1) |
|
5.2 Getting started with R |
|
|
177 | (3) |
|
5.2.1 Obtaining and installing R |
|
|
177 | (1) |
|
5.2.2 Starting and quitting R |
|
|
178 | (1) |
|
5.2.3 Using R as a calculator |
|
|
178 | (2) |
|
5.2.4 Changing appearance |
|
|
180 | (1) |
|
|
180 | (1) |
|
|
180 | (3) |
|
5.3.1 Installing contributed add-on packages |
|
|
180 | (2) |
|
5.3.2 Reading source code |
|
|
182 | (1) |
|
5.3.3 Loading source code |
|
|
182 | (1) |
|
5.4 Importing and exporting data |
|
|
183 | (2) |
|
|
183 | (1) |
|
5.4.2 Importing data from a CSV file |
|
|
183 | (1) |
|
5.4.3 Exporting R objects |
|
|
184 | (1) |
|
5.5 Manipulating vectors and matrices |
|
|
185 | (7) |
|
5.5.1 Manipulating vectors |
|
|
185 | (2) |
|
5.5.2 Manipulating matrices |
|
|
187 | (1) |
|
5.5.3 Operations on indexes |
|
|
188 | (3) |
|
5.5.4 Random number generation |
|
|
191 | (1) |
|
5.6 Data and object types |
|
|
192 | (3) |
|
|
192 | (1) |
|
|
192 | (1) |
|
|
193 | (2) |
|
5.7 Implementing linear regression |
|
|
195 | (5) |
|
5.7.1 Conducting the analysis |
|
|
195 | (1) |
|
5.7.2 Displaying and summarizing output |
|
|
196 | (2) |
|
5.7.3 Creating dummy variables |
|
|
198 | (1) |
|
|
199 | (1) |
|
|
200 | (3) |
Appendix A Other Packages Related to This Book |
|
203 | (4) |
|
|
203 | (1) |
|
|
203 | (1) |
|
A.3 Discrete choice models |
|
|
204 | (1) |
|
A.4 Cluster, component, and factor analysis |
|
|
205 | (1) |
|
|
206 | (1) |
Appendix B Examples of Contrivance in Empirical Studies |
|
207 | (4) |
|
|
207 | (1) |
|
B.2 Providing information to respondents |
|
|
207 | (1) |
|
B.3 Using product/service samples |
|
|
208 | (1) |
|
B.4 Cost-benefit analysis and valuation |
|
|
209 | (1) |
|
B.5 Using SP study results in simulations |
|
|
210 | (1) |
Bibliography |
|
211 | (24) |
Index |
|
235 | |