|
|
xv | |
|
|
xxvii | |
Preface |
|
xxix | |
|
|
1 | (16) |
|
1.1 Spatial point patterns |
|
|
1 | (5) |
|
|
6 | (2) |
|
|
8 | (1) |
|
1.4 Complete spatial randomness |
|
|
9 | (2) |
|
1.5 Objectives of statistical analysis |
|
|
11 | (1) |
|
1.6 The Dirichlet tessellation |
|
|
12 | (1) |
|
|
13 | (3) |
|
|
16 | (1) |
|
|
17 | (22) |
|
2.1 Tests of complete spatial randomness |
|
|
17 | (1) |
|
2.2 Inter-event distances |
|
|
18 | (6) |
|
2.2.1 Analysis of Japanese black pine saplings |
|
|
21 | (1) |
|
2.2.2 Analysis of redwood seedlings |
|
|
21 | (1) |
|
2.2.3 Analysis of biological cells |
|
|
22 | (1) |
|
|
23 | (1) |
|
2.3 Nearest neighbour distances |
|
|
24 | (2) |
|
2.3.1 Analysis of Japanese black pine saplings |
|
|
25 | (1) |
|
2.3.2 Analysis of redwood seedlings |
|
|
25 | (1) |
|
2.3.3 Analysis of biological cells |
|
|
26 | (1) |
|
2.4 Point to nearest event distances |
|
|
26 | (3) |
|
2.4.1 Analysis of Japanese black pine seedlings |
|
|
28 | (1) |
|
2.4.2 Analysis of redwood seedlings |
|
|
28 | (1) |
|
2.4.3 Analysis of biological cells |
|
|
28 | (1) |
|
|
29 | (3) |
|
2.5.1 Analysis of Japanese black pine seedlings |
|
|
30 | (1) |
|
2.5.2 Analysis of redwood seedlings |
|
|
31 | (1) |
|
2.5.3 Analysis of biological cells |
|
|
32 | (1) |
|
|
32 | (3) |
|
2.6.1 Analysis of Lansing Woods data |
|
|
33 | (1) |
|
2.6.2 Scales of dependence |
|
|
34 | (1) |
|
|
35 | (4) |
|
3 Methods for sparsely sampled patterns |
|
|
39 | (16) |
|
|
39 | (1) |
|
|
40 | (3) |
|
|
41 | (1) |
|
3.2.2 Estimators of intensity |
|
|
42 | (1) |
|
3.2.3 Analysis of Lansing Woods data |
|
|
42 | (1) |
|
3.3 Distance measurements |
|
|
43 | (9) |
|
3.3.1 Distribution theory under CSR |
|
|
44 | (2) |
|
|
46 | (3) |
|
3.3.3 Estimators of intensity |
|
|
49 | (1) |
|
3.3.4 Analysis of Lansing Woods data |
|
|
50 | (1) |
|
3.3.5 Catana's wandering quarter |
|
|
51 | (1) |
|
3.4 Tests of independence |
|
|
52 | (1) |
|
|
53 | (2) |
|
4 Spatial point processes |
|
|
55 | (28) |
|
4.1 Processes and summary descriptions |
|
|
55 | (2) |
|
4.2 Second-order properties |
|
|
57 | (3) |
|
4.2.1 Univariate processes |
|
|
57 | (3) |
|
4.2.2 Extension to multivariate processes |
|
|
60 | (1) |
|
4.3 Higher order moments and nearest neighbour distributions |
|
|
60 | (1) |
|
4.4 The homogeneous Poisson process |
|
|
61 | (2) |
|
4.5 Independence and random labelling |
|
|
63 | (1) |
|
4.6 Estimation of second-order properties |
|
|
64 | (12) |
|
4.6.1 Stationary processes |
|
|
64 | (7) |
|
4.6.2 Estimating the pair correlation function |
|
|
71 | (1) |
|
4.6.3 Intensity-reweighted stationary processes |
|
|
72 | (1) |
|
4.6.4 Multivariate processes |
|
|
73 | (1) |
|
|
74 | (2) |
|
4.7 Displaced amacrine cells in the retina of a rabbit |
|
|
76 | (2) |
|
4.8 Estimation of nearest neighbour distributions |
|
|
78 | (1) |
|
|
79 | (1) |
|
|
79 | (4) |
|
|
83 | (16) |
|
|
83 | (1) |
|
5.2 Estimating weighted integrals of the second-order intensity |
|
|
83 | (1) |
|
5.3 Nonparametric estimation of a spatially varying intensity |
|
|
84 | (6) |
|
5.3.1 Estimating spatially varying intensities for the Lansing Woods data |
|
|
87 | (3) |
|
5.4 Analysing replicated spatial point patterns |
|
|
90 | (7) |
|
5.4.1 Estimating the K-function from replicated data |
|
|
92 | (2) |
|
5.4.2 Between-group comparisons in designed experiments |
|
|
94 | (3) |
|
5.5 Parametric or nonparametric methods? |
|
|
97 | (2) |
|
|
99 | (32) |
|
|
99 | (1) |
|
6.2 Contagious distributions |
|
|
100 | (1) |
|
6.3 Poisson cluster processes |
|
|
101 | (3) |
|
6.4 Inhomogeneous Poisson processes |
|
|
104 | (2) |
|
|
106 | (3) |
|
6.6 Trans-Gaussian Cox processes |
|
|
109 | (1) |
|
6.7 Simple inhibition processes |
|
|
110 | (2) |
|
6.8 Markov point processes |
|
|
112 | (6) |
|
6.8.1 Pairwise interaction point processes |
|
|
114 | (4) |
|
6.8.2 More general forms of interaction |
|
|
118 | (1) |
|
|
118 | (5) |
|
6.9.1 Lattice-based processes |
|
|
118 | (1) |
|
|
119 | (1) |
|
|
120 | (1) |
|
6.9.4 Interactions in an inhomogeneous environment |
|
|
121 | (2) |
|
|
123 | (8) |
|
6.10.1 Marked point processes |
|
|
123 | (1) |
|
6.10.2 Multivariate point processes |
|
|
123 | (1) |
|
6.10.3 How should multivariate models be formulated? |
|
|
124 | (1) |
|
|
125 | (3) |
|
6.10.5 Markov point processes |
|
|
128 | (3) |
|
7 Model-fitting using summary descriptions |
|
|
131 | (20) |
|
|
131 | (1) |
|
7.2 Parameter estimation using the K-function |
|
|
132 | (3) |
|
7.2.1 Least squares estimation |
|
|
132 | (1) |
|
7.2.2 Simulated realisations of a Poisson cluster process |
|
|
133 | (1) |
|
7.2.3 Procedure when K(t) is unknown |
|
|
134 | (1) |
|
7.3 Goodness-of-fit assessment using nearest neighbour distributions |
|
|
135 | (1) |
|
|
136 | (11) |
|
|
136 | (3) |
|
|
139 | (8) |
|
7.5 Parameter estimation via goodness-of-fit testing |
|
|
147 | (4) |
|
7.5.1 Analysis of hamster tumour data |
|
|
148 | (3) |
|
8 Model-fitting using likelihood-based methods |
|
|
151 | (22) |
|
|
151 | (1) |
|
8.2 Likelihood inference for inhomogeneous Poisson processes |
|
|
152 | (3) |
|
8.2.1 Fitting a trend surface to the Lansing Woods data |
|
|
153 | (2) |
|
8.3 Likelihood inference for Markov point processes |
|
|
155 | (12) |
|
8.3.1 Maximum pseudo-likelihood estimation |
|
|
156 | (2) |
|
8.3.2 Non-parametric estimation of a pairwise interaction function |
|
|
158 | (1) |
|
8.3.3 Fitting a pairwise interaction point process to the displaced amacrine cells |
|
|
158 | (2) |
|
8.3.4 Monte Carlo maximum likelihood estimation |
|
|
160 | (3) |
|
8.3.5 The displaced amacrine cells re-visited |
|
|
163 | (2) |
|
8.3.6 A bivariate model for the displaced amacrine cells |
|
|
165 | (2) |
|
8.4 Likelihood inference for Cox processes |
|
|
167 | (5) |
|
8.4.1 Predictive inference in a log-Gaussian Cox process |
|
|
169 | (1) |
|
8.4.2 Non-parametric estimation of an intensity surface: hickories in Lansing Woods |
|
|
170 | (2) |
|
|
172 | (1) |
|
9 Point process methods in spatial epidemiology |
|
|
173 | (22) |
|
|
173 | (3) |
|
|
176 | (3) |
|
9.2.1 Analysis of the North Humberside childhood leukaemia data |
|
|
177 | (1) |
|
9.2.2 Other tests of spatial clustering |
|
|
178 | (1) |
|
9.3 Spatial variation in risk |
|
|
179 | (3) |
|
9.3.1 Primary biliary cirrhosis in the North East of England |
|
|
181 | (1) |
|
|
182 | (7) |
|
9.4.1 Childhood asthma in north Derbyshire, England |
|
|
185 | (1) |
|
9.4.2 Cancers in North Liverpool |
|
|
186 | (3) |
|
9.5 Stratification and matching |
|
|
189 | (4) |
|
9.5.1 Stratified case-control designs |
|
|
189 | (2) |
|
9.5.2 Individually matched case-control designs |
|
|
191 | (2) |
|
9.5.3 Is stratification or matching helpful? |
|
|
193 | (1) |
|
9.6 Disentangling heterogeneity and clustering |
|
|
193 | (2) |
|
10 Spatio-temporal point processes |
|
|
195 | (14) |
|
|
195 | (1) |
|
|
196 | (3) |
|
10.2.1 Gastro-intestinal illness in Hampshire, UK |
|
|
196 | (2) |
|
10.2.2 The 2001 foot-and-mouth epidemic in Cumbria, UK |
|
|
198 | (1) |
|
10.2.3 Bovine tuberculosis in Cornwall, UK |
|
|
198 | (1) |
|
10.3 A classification of spatio-temporal point patterns and processes |
|
|
199 | (3) |
|
10.4 Second-order properties |
|
|
202 | (2) |
|
10.5 Conditioning on the past |
|
|
204 | (3) |
|
10.6 Empirical and mechanistic models |
|
|
207 | (2) |
|
|
209 | (14) |
|
|
209 | (1) |
|
|
210 | (1) |
|
11.3 Marginal and conditional summaries |
|
|
210 | (3) |
|
11.3.1 Bovine tuberculosis in Cornwall, UK |
|
|
210 | (3) |
|
11.4 Second-order properties |
|
|
213 | (10) |
|
11.4.1 Stationary processes |
|
|
213 | (3) |
|
11.4.2 Intensity-reweighted stationary processes |
|
|
216 | (1) |
|
11.4.3 Campylobacteriosis in Lancashire, UK |
|
|
217 | (6) |
|
12 Empirical models and methods |
|
|
223 | (12) |
|
|
223 | (1) |
|
|
224 | (1) |
|
|
224 | (2) |
|
12.3.1 Separable and non-separable models |
|
|
225 | (1) |
|
12.4 Log-Gaussian Cox processes |
|
|
226 | (1) |
|
|
227 | (1) |
|
12.6 Gastro-intestinal illness in Hampshire, UK |
|
|
227 | (3) |
|
12.7 Concluding remarks: point processes and geostatistics |
|
|
230 | (5) |
|
13 Mechanistic models and methods |
|
|
235 | (10) |
|
|
235 | (1) |
|
13.2 Conditional intensity and likelihood |
|
|
235 | (2) |
|
|
237 | (1) |
|
13.4 The 2001 foot-and-mouth epidemic in Cumbria, UK |
|
|
238 | (2) |
|
13.5 Nesting patterns of Arctic terns |
|
|
240 | (5) |
References |
|
245 | (18) |
Index |
|
263 | |