Preface |
|
xv | |
|
1 Introduction to Brain and Medical Images |
|
|
1 | (20) |
|
|
2 | (4) |
|
1.1.1 Amygdala Volume Data |
|
|
4 | (2) |
|
|
6 | (5) |
|
1.2.1 Topology of Surface Data |
|
|
6 | (3) |
|
1.2.2 Amygdala Surface Data |
|
|
9 | (2) |
|
|
11 | (4) |
|
|
11 | (2) |
|
1.3.2 Least Squares Estimation |
|
|
13 | (2) |
|
|
15 | (2) |
|
1.5 Tensor and Curve Data |
|
|
17 | (2) |
|
1.6 Brain Image Analysis Tools |
|
|
19 | (2) |
|
|
20 | (1) |
|
1.6.2 Public Image Database |
|
|
20 | (1) |
|
2 Bernoulli Models for Binary Images |
|
|
21 | (8) |
|
2.1 Sum of Bernoulli Distributions |
|
|
21 | (2) |
|
2.2 Inference on Proportion of Activation |
|
|
23 | (4) |
|
|
23 | (3) |
|
|
26 | (1) |
|
2.3 MATLAB Implementation |
|
|
27 | (2) |
|
|
29 | (22) |
|
3.1 General Linear Models |
|
|
29 | (3) |
|
|
31 | (1) |
|
3.1.2 GLM for Whole Brain Images |
|
|
32 | (1) |
|
3.2 Voxel-Based Morphometry |
|
|
32 | (8) |
|
|
34 | (2) |
|
|
36 | (1) |
|
3.2.3 Two-Components Gaussian Mixture |
|
|
37 | (3) |
|
3.3 Case Study: VBM in Corpus Callosum |
|
|
40 | (9) |
|
3.3.1 White Matter Density Maps |
|
|
42 | (1) |
|
3.3.2 Manipulating Density Maps |
|
|
42 | (3) |
|
3.3.3 Numerical Implementation |
|
|
45 | (4) |
|
|
49 | (2) |
|
4 Gaussian Kernel Smoothing |
|
|
51 | (16) |
|
|
51 | (1) |
|
4.2 Gaussian Kernel Smoothing |
|
|
52 | (2) |
|
4.2.1 Fullwidth at Half Maximum |
|
|
53 | (1) |
|
4.3 Numerical Implementation |
|
|
54 | (3) |
|
4.3.1 Smoothing Scalar Functions |
|
|
54 | (1) |
|
4.3.2 Smoothing Image Slices |
|
|
55 | (2) |
|
4.4 Case Study: Smoothing of DWI Stroke Lesions |
|
|
57 | (2) |
|
|
59 | (1) |
|
4.6 Checking Gaussianness |
|
|
60 | (3) |
|
4.6.1 Quantile-Quantile Plots |
|
|
60 | (1) |
|
|
60 | (1) |
|
4.6.3 Empirical Distribution |
|
|
61 | (1) |
|
4.6.4 Normal Probability Plots |
|
|
61 | (1) |
|
4.6.5 MATLAB Implementation |
|
|
62 | (1) |
|
4.7 Effect of Gaussianness on Kernel Smoothing |
|
|
63 | (4) |
|
|
67 | (18) |
|
|
67 | (4) |
|
|
68 | (1) |
|
5.1.2 Derivative of Gaussian Fields |
|
|
69 | (1) |
|
5.1.3 Integration of Gaussian Fields |
|
|
70 | (1) |
|
|
70 | (1) |
|
5.2 Simulating Gaussian Fields |
|
|
71 | (2) |
|
5.3 Statistical Inference on Fields |
|
|
73 | (5) |
|
5.3.1 Bonferroni Correction |
|
|
75 | (1) |
|
|
76 | (2) |
|
5.3.3 Poisson Clumping Heuristic |
|
|
78 | (1) |
|
5.4 Expected Euler Characteristics |
|
|
78 | (7) |
|
|
79 | (1) |
|
5.4.2 Euler Characteristic Density |
|
|
80 | (2) |
|
5.4.3 Numerical Implementation of Euler Characteristics |
|
|
82 | (3) |
|
6 Anisotropic Kernel Smoothing |
|
|
85 | (16) |
|
6.1 Anisotropic Gaussian Kernel Smoothing |
|
|
85 | (3) |
|
6.1.1 Truncated Gaussian Kernel |
|
|
87 | (1) |
|
6.2 Probabilistic Connectivity in DTI |
|
|
88 | (1) |
|
6.3 Riemannian Metric Tensors |
|
|
89 | (2) |
|
6.4 Chapman-Kolmogorov Equation |
|
|
91 | (4) |
|
6.5 Cholesky Factorization of DTI |
|
|
95 | (2) |
|
|
97 | (1) |
|
|
98 | (3) |
|
7 Multivariate General Linear Models |
|
|
101 | (20) |
|
7.1 Multivariate Normal Distributions |
|
|
101 | (4) |
|
7.1.1 Checking Bivariate Normality of Data |
|
|
103 | (1) |
|
7.1.2 Covariance Matrix Factorization |
|
|
104 | (1) |
|
7.2 Deformation-Based Morphometry (DBM) |
|
|
105 | (3) |
|
7.3 Hotelling's T2 Statistic |
|
|
108 | (3) |
|
7.4 Multivariate General Linear Models |
|
|
111 | (3) |
|
|
113 | (1) |
|
7.5 Case Study: Surface Deformation Analysis |
|
|
114 | (7) |
|
7.5.1 Univariate Tests in SurfStat |
|
|
116 | (3) |
|
7.5.2 Multivariate Tests in SurfStat |
|
|
119 | (2) |
|
8 Cortical Surface Analysis |
|
|
121 | (28) |
|
|
121 | (2) |
|
8.2 Modeling Surface Deformation |
|
|
123 | (3) |
|
8.3 Surface Parameterization |
|
|
126 | (4) |
|
8.3.1 Quadratic Parameterization |
|
|
126 | (3) |
|
8.3.2 Numerical Implementation |
|
|
129 | (1) |
|
8.4 Surface-Based Morphological Measures |
|
|
130 | (5) |
|
8.4.1 Local Surface Area Change |
|
|
131 | (1) |
|
8.4.2 Local Gray Matter Volume Change |
|
|
132 | (2) |
|
8.4.3 Cortical Thickness Change |
|
|
134 | (1) |
|
|
135 | (1) |
|
8.5 Surface-Based Diffusion Smoothing |
|
|
135 | (4) |
|
8.6 Statistical Inference on the Cortical Surface |
|
|
139 | (3) |
|
|
142 | (6) |
|
8.7.1 Gray Matter Volume Change |
|
|
143 | (1) |
|
8.7.2 Surface Area Change |
|
|
143 | (1) |
|
8.7.3 Cortical Thickness Change |
|
|
144 | (3) |
|
|
147 | (1) |
|
|
148 | (1) |
|
9 Heat Kernel Smoothing on Surfaces |
|
|
149 | (14) |
|
|
149 | (1) |
|
9.2 Heat Kernel Smoothing |
|
|
150 | (6) |
|
9.3 Numerical Implementation |
|
|
156 | (3) |
|
9.4 Random Field Theory on Cortical Manifold |
|
|
159 | (1) |
|
9.5 Case Study: Cortical Thickness Analysis |
|
|
160 | (2) |
|
|
162 | (1) |
|
10 Cosine Series Representation of 3D Curves |
|
|
163 | (22) |
|
|
163 | (3) |
|
10.2 Parameterization of 3D Curves |
|
|
166 | (4) |
|
10.2.1 Eigenfunctions of 1D Laplacian |
|
|
167 | (1) |
|
10.2.2 Cosine Representation |
|
|
167 | (1) |
|
10.2.3 Parameter Estimation |
|
|
168 | (1) |
|
10.2.4 Optimal Representation |
|
|
169 | (1) |
|
10.3 Numerical Implementation |
|
|
170 | (2) |
|
10.4 Modeling a Family of Curves |
|
|
172 | (3) |
|
10.4.1 Registering 3D Curves |
|
|
172 | (1) |
|
10.4.2 Inference on a Collection of Curves |
|
|
173 | (2) |
|
10.5 Case Study: White Matter Fiber Tracts |
|
|
175 | (5) |
|
|
175 | (1) |
|
|
176 | (1) |
|
10.5.3 Cosine Series Representation |
|
|
177 | (1) |
|
|
177 | (1) |
|
10.5.5 Hotelling's T-square Test |
|
|
178 | (1) |
|
|
178 | (2) |
|
|
180 | (5) |
|
10.6.1 Similarly Shaped Tracts |
|
|
180 | (1) |
|
|
180 | (5) |
|
11 Weighted Spherical Harmonic Representation |
|
|
185 | (34) |
|
|
185 | (2) |
|
11.2 Spherical Coordinates |
|
|
187 | (1) |
|
|
188 | (12) |
|
11.3.1 Weighted Spherical Harmonic Representation |
|
|
190 | (4) |
|
11.3.2 Estimating Spherical Harmonic Coefficients |
|
|
194 | (2) |
|
11.3.3 Validation Against Heat Kernel Smoothing |
|
|
196 | (4) |
|
11.4 Weighted-SPHARM Package |
|
|
200 | (5) |
|
11.5 Surface Registration |
|
|
205 | (5) |
|
11.5.1 MATLAB Implementation |
|
|
207 | (3) |
|
11.6 Encoding Surface Asymmetry |
|
|
210 | (4) |
|
11.7 Case Study: Cortical Asymmetry Analysis |
|
|
214 | (3) |
|
11.7.1 Descriptions of Data Set |
|
|
214 | (2) |
|
11.7.2 Statistical Inference on Surface Asymmetry |
|
|
216 | (1) |
|
|
217 | (2) |
|
12 Multivariate Surface Shape Analysis |
|
|
219 | (28) |
|
|
219 | (3) |
|
12.2 Surface Parameterization |
|
|
222 | (4) |
|
12.2.1 Flattening of Simulated Cube |
|
|
224 | (2) |
|
12.3 Weighted Spherical Harmonic Representation |
|
|
226 | (2) |
|
12.3.1 Optimal Degree Selection |
|
|
226 | (2) |
|
12.4 Gibbs Phenomenon in SPHARM |
|
|
228 | (5) |
|
12.4.1 Overshoot in Gibbs Phenomenon |
|
|
232 | (1) |
|
|
233 | (1) |
|
12.5 Surface Normalization |
|
|
233 | (4) |
|
|
236 | (1) |
|
12.6 Image and Data Acquisition |
|
|
237 | (2) |
|
|
239 | (3) |
|
12.7.1 Amygdala Volumetry |
|
|
239 | (1) |
|
12.7.2 Local Shape Difference |
|
|
239 | (2) |
|
12.7.3 Brain and Behavior Association |
|
|
241 | (1) |
|
|
242 | (1) |
|
12.8.1 Anatomical Findings |
|
|
242 | (1) |
|
12.9 Numerical Implementation |
|
|
243 | (4) |
|
13 Laplace-Beltrami Eigenfunctions for Surface Data |
|
|
247 | (28) |
|
|
247 | (1) |
|
13.2 Heat Kernel Smoothing |
|
|
248 | (4) |
|
13.2.1 Heat Kernel Smoothing in 2D Images |
|
|
250 | (2) |
|
13.3 Generalized Eigenvalue Problem |
|
|
252 | (5) |
|
13.3.1 Finite Element Method |
|
|
252 | (4) |
|
13.3.2 Fourier Coefficients Estimation |
|
|
256 | (1) |
|
13.4 Numerical Implementation |
|
|
257 | (3) |
|
13.5 Experimental Results |
|
|
260 | (5) |
|
13.5.1 Image Acquisition and Preprocessing |
|
|
260 | (1) |
|
13.5.2 Validation of Heat Kernel Smoothing |
|
|
261 | (4) |
|
13.6 Case Study: Mandible Growth Modeling |
|
|
265 | (9) |
|
13.6.1 Diffeomorphic Surface Registration |
|
|
266 | (1) |
|
13.6.2 Random Field Theory |
|
|
267 | (1) |
|
13.6.3 Numerical Implementation |
|
|
268 | (6) |
|
|
274 | (1) |
|
|
275 | (20) |
|
|
275 | (2) |
|
|
277 | (5) |
|
|
277 | (2) |
|
|
279 | (1) |
|
|
279 | (1) |
|
14.2.4 Constructing Rips Filtration |
|
|
280 | (2) |
|
14.3 Heat Kernel Smoothing of Functional Signal |
|
|
282 | (1) |
|
|
283 | (6) |
|
|
286 | (1) |
|
|
287 | (2) |
|
14.5 Case Study: Cortical Thickness Analysis |
|
|
289 | (4) |
|
14.5.1 Numerical Implementation |
|
|
290 | (2) |
|
14.5.2 Statistical Inference |
|
|
292 | (1) |
|
|
293 | (2) |
|
|
295 | (24) |
|
|
295 | (1) |
|
15.2 Massive Univariate Methods |
|
|
296 | (2) |
|
15.3 Why Are Sparse Models Needed? |
|
|
298 | (2) |
|
15.4 Persistent Structures for Sparse Correlations |
|
|
300 | (6) |
|
15.4.1 Numerical Implementation |
|
|
304 | (2) |
|
15.5 Persistent Structures for Sparse Likelihood |
|
|
306 | (3) |
|
15.6 Case Study: Application to Persistent Homology |
|
|
309 | (3) |
|
15.6.1 MRI Data and Univariate-TBM |
|
|
309 | (2) |
|
15.6.2 Multivariate-TBM via Barcodes |
|
|
311 | (1) |
|
15.6.3 Connection to DTI Study |
|
|
311 | (1) |
|
15.7 Sparse Partial Correlations |
|
|
312 | (5) |
|
15.7.1 Partial Correlation Network |
|
|
312 | (2) |
|
15.7.2 Sparse Network Recovery |
|
|
314 | (1) |
|
15.7.3 Sparse Network Modeling |
|
|
314 | (1) |
|
15.7.4 Application to Jacobian Determinant |
|
|
315 | (1) |
|
15.7.5 Limitations of Sparse Partial Correlations |
|
|
316 | (1) |
|
|
317 | (2) |
|
|
319 | (16) |
|
|
319 | (1) |
|
16.2 Amygdala and Hippocampus Shape Models |
|
|
320 | (1) |
|
|
321 | (1) |
|
16.4 Sparse Shape Representation |
|
|
322 | (2) |
|
16.5 Case Study: Subcortical Structure Modeling |
|
|
324 | (2) |
|
16.5.1 Traditional Volumetric Analysis |
|
|
325 | (1) |
|
16.5.2 Sparse Shape Analysis |
|
|
325 | (1) |
|
|
326 | (3) |
|
|
326 | (1) |
|
16.6.2 Statistical Power for t-Test |
|
|
327 | (2) |
|
16.7 Power Under Multiple Comparisons |
|
|
329 | (4) |
|
16.7.1 Type-I Error Under Multiple Comparisons |
|
|
330 | (1) |
|
16.7.2 Type-II Error Under Multiple Comparisons |
|
|
330 | (3) |
|
16.7.3 Statistical Power of Sparse Representation |
|
|
333 | (1) |
|
|
333 | (2) |
|
17 Modeling Structural Brain Networks |
|
|
335 | (16) |
|
|
335 | (1) |
|
17.2 DTI Acquisition and Preprocessing |
|
|
336 | (1) |
|
17.3 ε-Neighbor Construction |
|
|
337 | (3) |
|
|
340 | (1) |
|
17.5 Connected Components |
|
|
341 | (3) |
|
|
344 | (1) |
|
17.7 Numerical Implementation |
|
|
345 | (4) |
|
17.7.1 Fiber Bundle Visualization |
|
|
346 | (1) |
|
17.7.2 ε-Neighbor Network Construction |
|
|
346 | (3) |
|
17.7.3 Network Computation |
|
|
349 | (1) |
|
|
349 | (2) |
|
|
351 | (12) |
|
|
351 | (1) |
|
18.2 Mixed Effects Models |
|
|
352 | (11) |
|
18.2.1 Fixed Effects Model |
|
|
353 | (1) |
|
18.2.2 Random Effects Model |
|
|
354 | (2) |
|
18.2.3 Restricted Maximum Likelihood Estimation |
|
|
356 | (1) |
|
18.2.4 Case Study: Longitudinal Image Analysis |
|
|
357 | (3) |
|
18.2.5 Functional Mixed Effects Models |
|
|
360 | (3) |
Bibliography |
|
363 | (34) |
Index |
|
397 | |