Foreword |
|
v | |
|
Preface |
|
vii | |
Chapter List |
|
xiii | |
Contents |
|
xv | |
|
|
1 | (8) |
|
|
1 | (5) |
|
1.1.1 Genomics and This Book |
|
|
1 | (2) |
|
1.1.2 Genomics and Modem Biology |
|
|
3 | (1) |
|
1.1.3 Genomics and Its Practical Applications |
|
|
4 | (1) |
|
The Potential of Genome Research |
|
|
4 | (1) |
|
Population and Quantitative Genetics |
|
|
4 | (1) |
|
DNA Diagnosis of Human Genetic Disorders |
|
|
5 | (1) |
|
Applications in Agriculture and Forestry |
|
|
5 | (1) |
|
|
6 | (1) |
|
|
7 | (2) |
|
|
7 | (1) |
|
|
7 | (1) |
|
|
7 | (1) |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
8 | (1) |
|
|
8 | (1) |
|
Mathematics and Algorithms |
|
|
8 | (1) |
|
|
8 | (1) |
|
History of Genome Research |
|
|
8 | (1) |
|
Chapter 2 Biology In Genomics |
|
|
9 | (36) |
|
|
9 | (1) |
|
2.2 Mendelian Genetics And Cytogenetics |
|
|
10 | (13) |
|
|
10 | (1) |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
12 | (1) |
|
2.2.2 Mechanisms of Mendelian Heredity - Cytogenetics |
|
|
12 | (1) |
|
Cell Division and Chromosomes |
|
|
12 | (1) |
|
|
13 | (1) |
|
Linkage and Recombination |
|
|
13 | (2) |
|
The Mechanism of Recombination |
|
|
15 | (1) |
|
|
16 | (1) |
|
Factors Affecting Recombination |
|
|
16 | (1) |
|
Importance of Manipulation of Genetic Recombination |
|
|
17 | (1) |
|
2.2.3 Measurement of Genetic Recombination |
|
|
17 | (1) |
|
|
17 | (1) |
|
|
18 | (1) |
|
Haldane's Mapping Function |
|
|
19 | (1) |
|
Chromosome Rearrangements |
|
|
20 | (1) |
|
2.2.4 Approaches Used for Genetic Recombination Studies |
|
|
21 | (1) |
|
|
21 | (1) |
|
|
21 | (1) |
|
2.2.5 Applications for Manipulating Recombination |
|
|
21 | (1) |
|
Application to Fine Genetic Mapping |
|
|
21 | (1) |
|
Application to Map-Based Cloning |
|
|
22 | (1) |
|
Application to QTL Mapping |
|
|
22 | (1) |
|
Application to Plant and Animal Breeding |
|
|
22 | (1) |
|
Theory of Genetic Mapping |
|
|
23 | (1) |
|
|
23 | (7) |
|
|
23 | (1) |
|
2.3.2 Hardy-Weinberg Equilibrium |
|
|
24 | (2) |
|
2.3.3 Changes In Gene Frequency |
|
|
26 | (4) |
|
2.4 Quantitative Genetics |
|
|
30 | (6) |
|
|
30 | (1) |
|
|
30 | (1) |
|
Average Effect of Gene Substitution |
|
|
30 | (1) |
|
|
31 | (1) |
|
|
32 | (1) |
|
|
32 | (2) |
|
|
34 | (1) |
|
|
35 | (1) |
|
2.4.4 Genetic Correlation |
|
|
35 | (1) |
|
|
36 | (9) |
|
|
37 | (1) |
|
|
37 | (1) |
|
|
37 | (1) |
|
|
37 | (1) |
|
|
37 | (2) |
|
|
39 | (1) |
|
|
40 | (1) |
|
|
40 | (5) |
|
Chapter 3 Introduction To Genomics |
|
|
45 | (40) |
|
|
45 | (3) |
|
|
46 | (1) |
|
|
46 | (1) |
|
3.1.3 Genome Variation and Colinearity |
|
|
47 | (1) |
|
3.1.4 Sources of Genome Variation |
|
|
47 | (1) |
|
Chromosomal Rearrangement |
|
|
47 | (1) |
|
|
48 | (1) |
|
3.2 Biological Techniques In Genomics |
|
|
48 | (11) |
|
|
49 | (1) |
|
|
49 | (1) |
|
|
50 | (1) |
|
Mapping Genes of Interest |
|
|
51 | (1) |
|
|
51 | (1) |
|
|
51 | (1) |
|
|
52 | (1) |
|
|
53 | (2) |
|
|
55 | (1) |
|
3.2.4 Genomic Informatics |
|
|
56 | (1) |
|
3.2.5 Relating Genetic Maps, Physical Maps and DNA Sequence |
|
|
56 | (2) |
|
Traits, Maps and Sequence |
|
|
58 | (1) |
|
|
59 | (3) |
|
3.3.1 Populations from Controlled Crosses |
|
|
59 | (1) |
|
3.3.2 Natural Populations |
|
|
60 | (2) |
|
3.3.3 Mating Schemes and Genetic Marker Systems |
|
|
62 | (1) |
|
|
62 | (23) |
|
3.4.1 Polymorphism and Informativity |
|
|
63 | (1) |
|
3.4.2 Morphological and Cytogenetic Markers |
|
|
63 | (1) |
|
|
63 | (1) |
|
|
64 | (1) |
|
In Situ Hybridization (ISH) |
|
|
64 | (1) |
|
|
65 | (1) |
|
3.4.4 DNA Markers (Rationale) |
|
|
65 | (1) |
|
3.4.5 RFLP and Southern Blotting |
|
|
66 | (4) |
|
|
70 | (1) |
|
3.4.7 Mini- and Micro-satellite Markers |
|
|
70 | (3) |
|
|
73 | (1) |
|
3.4.9 Single-Strand Conformational Polymorphism (SSCP) |
|
|
74 | (1) |
|
3.4.10 Random Amplified Polymorphic DNA (RAPD) Markers |
|
|
74 | (3) |
|
3.4.11 Amplified Fragment Length Polymorphism (AFLP) |
|
|
77 | (2) |
|
3.4.12 Comparison among Different Marker Systems |
|
|
79 | (1) |
|
"Evolution" of Genetic Markers |
|
|
79 | (1) |
|
Characteristics of Commonly Used Marker Systems |
|
|
80 | (1) |
|
|
80 | (1) |
|
|
81 | (1) |
|
|
81 | (1) |
|
Automated Scoring Systems |
|
|
81 | (4) |
|
Chapter 4 Statistics In Genomics |
|
|
85 | (54) |
|
|
85 | (1) |
|
|
86 | (7) |
|
|
86 | (1) |
|
Example: Data from Mendel |
|
|
86 | (1) |
|
|
86 | (1) |
|
|
87 | (1) |
|
|
88 | (1) |
|
Joint, Marginal and Conditional Distributions |
|
|
88 | (2) |
|
4.2.2 Standard Distributions Used in Genomic Analysis |
|
|
90 | (1) |
|
Moments and Moment Generating Functions |
|
|
90 | (1) |
|
The Binomial and Multinomial Distributions |
|
|
91 | (1) |
|
|
92 | (1) |
|
|
93 | (1) |
|
The Chi-Square Distribution |
|
|
93 | (1) |
|
|
93 | (2) |
|
|
93 | (2) |
|
|
95 | (1) |
|
4.3.3 Information Content |
|
|
95 | (1) |
|
|
95 | (9) |
|
4.4.1 Method of Hypothesis Testing |
|
|
96 | (1) |
|
|
96 | (1) |
|
|
97 | (1) |
|
|
97 | (2) |
|
|
99 | (1) |
|
|
100 | (1) |
|
Nonparametric Hypothesis Test |
|
|
101 | (1) |
|
4.4.2 The Power of the Test |
|
|
101 | (1) |
|
Probability of False Positive and False Negative Errors |
|
|
101 | (2) |
|
|
103 | (1) |
|
|
104 | (15) |
|
4.5.1 Maximum Likelihood Point Estimation |
|
|
104 | (1) |
|
4.5.2 Analytical Approach Obtaining ML Estimator |
|
|
105 | (1) |
|
4.5.3 Grid Search to Obtain ML Estimator |
|
|
106 | (1) |
|
Example: Mapping a Gene for Resistance to Fusiform Rust Disease |
|
|
107 | (1) |
|
|
108 | (2) |
|
4.5.4 Newton-Raphson Iteration for Obtaining ML Estimator |
|
|
110 | (1) |
|
|
110 | (1) |
|
|
110 | (1) |
|
Example: Newton-Raphson Iteration |
|
|
111 | (2) |
|
4.5.5 Expectation-Maximization (EM) Algorithm |
|
|
113 | (1) |
|
|
114 | (2) |
|
|
116 | (1) |
|
|
117 | (1) |
|
4.5.7 Least Squares Estimation |
|
|
118 | (1) |
|
4.6 Statistical Properties Of An Estimator |
|
|
119 | (12) |
|
4.6.1 Variance of an Estimator |
|
|
119 | (1) |
|
|
120 | (1) |
|
4.6.2 Variance of a Linear Function |
|
|
120 | (1) |
|
4.6.3 Variance of a General Function |
|
|
120 | (1) |
|
4.6.4 Mean Square Error (MSE) and Bias |
|
|
121 | (1) |
|
4.6.5 Confidence Interval |
|
|
122 | (1) |
|
4.6.6 Normal Approximation for Obtaining a Confidence Interval |
|
|
123 | (1) |
|
Example: Confidence Interval |
|
|
123 | (1) |
|
4.6.7 A Nonparametric Approach to Obtain a Confidence Interval |
|
|
124 | (1) |
|
Example: Confidence Intervals (Bootstrap Approach) |
|
|
124 | (1) |
|
4.6.8 A Likelihood Approach for Obtaining a Confidence Interval |
|
|
125 | (2) |
|
Example: Likelihood Approach |
|
|
127 | (1) |
|
4.6.9 Lod Score Support for a Confidence Interval |
|
|
127 | (1) |
|
Example: Lod Score Support |
|
|
128 | (1) |
|
4.6.10 What Is a Good Estimator of a Confidence Interval? |
|
|
129 | (1) |
|
4.6.11 What Is a Good Estimator? |
|
|
129 | (2) |
|
4.7 Sample Size Determination |
|
|
131 | (8) |
|
4.7.1 Sample Size Needed for Specific Statistical Power |
|
|
131 | (1) |
|
4.7.2 Sample Size Needed for a Specific Confidence Interval |
|
|
132 | (1) |
|
Example: Sample Size Determination |
|
|
132 | (2) |
|
|
134 | (1) |
|
|
134 | (5) |
|
Chapter 5 Single-Locus Models |
|
|
139 | (24) |
|
5.1 Expected Segregation Ratios |
|
|
139 | (3) |
|
|
139 | (1) |
|
5.1.2 Multiple Populations |
|
|
140 | (1) |
|
|
141 | (1) |
|
|
142 | (4) |
|
5.2.1 Screening for Polymorphism |
|
|
142 | (2) |
|
5.2.2 Screening 1:1 over 3:1 |
|
|
144 | (1) |
|
5.2.3 Distinguishing between Two-Class Segregations |
|
|
145 | (1) |
|
|
146 | (17) |
|
5.3.1 Number of Alleles and Their Frequencies |
|
|
146 | (1) |
|
|
146 | (1) |
|
Estimating within Population Allelic Frequency |
|
|
147 | (2) |
|
|
149 | (1) |
|
Multiple Allele Detection |
|
|
150 | (5) |
|
5.3.2 Hardy-Weinberg Equilibrium for a Single Locus |
|
|
155 | (1) |
|
|
155 | (2) |
|
|
157 | (1) |
|
|
157 | (1) |
|
|
157 | (2) |
|
Screening Polymorphic Markers |
|
|
159 | (2) |
|
|
161 | (2) |
|
Chapter 6 Two-Locus Models: The Controlled Crosses |
|
|
163 | (52) |
|
|
163 | (1) |
|
|
163 | (7) |
|
6.2.1 Partition of Test Statistic |
|
|
164 | (1) |
|
Partition of Goodness of Fit Statistic |
|
|
164 | (1) |
|
Example: Partition of Goodness of Fit Statistic |
|
|
165 | (1) |
|
Partitioning of Log Likelihood Ratio Test Statistic |
|
|
166 | (1) |
|
Example: Partition of Log Likelihood Ratio Test Statistic |
|
|
167 | (1) |
|
6.2.2 A Generalized Likelihood Approach |
|
|
168 | (1) |
|
|
168 | (1) |
|
Example: Log Likelihood Approach |
|
|
169 | (1) |
|
|
170 | (1) |
|
|
170 | (1) |
|
6.3 Recombination Fraction Estimation |
|
|
170 | (9) |
|
|
171 | (1) |
|
|
171 | (2) |
|
|
173 | (1) |
|
6.3.3 Likelihood Profile Method |
|
|
173 | (1) |
|
Example: Graphic Approach |
|
|
174 | (1) |
|
6.3.4 Newton-Raphson Iteration for a Single Parameter |
|
|
175 | (1) |
|
Example: Newton-Raphson Iteration |
|
|
176 | (1) |
|
|
176 | (1) |
|
|
177 | (1) |
|
Example: Heterogeneity Test |
|
|
178 | (1) |
|
6.4 Statistical Properties |
|
|
179 | (9) |
|
|
181 | (1) |
|
|
181 | (1) |
|
Empirical Variance and Bias |
|
|
182 | (1) |
|
6.4.2 Distribution and Confidence Intervals |
|
|
183 | (1) |
|
|
183 | (1) |
|
|
183 | (2) |
|
Example: Confidence Interval (Normal Approximation) |
|
|
185 | (1) |
|
Example: Confidence Interval (Bootstrap) |
|
|
186 | (1) |
|
Example: Confidence Interval (Likelihood Approach) |
|
|
186 | (1) |
|
Example: Confidence Interval (Lod Score Support) |
|
|
186 | (1) |
|
Quality of a Confidence Interval |
|
|
187 | (1) |
|
|
188 | (5) |
|
6.5.1 Expected Likelihood Ratio Test Statistic and Power |
|
|
189 | (1) |
|
Expected Log Likelihood Ratio Test Statistic |
|
|
189 | (1) |
|
|
190 | (2) |
|
6.5.2 Minimum Confidence Interval |
|
|
192 | (1) |
|
6.6 Dominant Markers In F2 Progeny |
|
|
193 | (6) |
|
6.6.1 Disadvantage of Dominant Markers in F2 Progeny |
|
|
193 | (1) |
|
Low Linkage Information Content |
|
|
193 | (1) |
|
Bias Estimator for Recombination Fraction |
|
|
194 | (3) |
|
6.6.2 Use of Trans Dominant Linked Markers (TDLM) |
|
|
197 | (1) |
|
|
197 | (1) |
|
Linkage Information Content for TDLM |
|
|
198 | (1) |
|
Estimate of Recombination Fraction between a TDLM and a Marker |
|
|
198 | (1) |
|
6.7 Violation Of Assumptions |
|
|
199 | (16) |
|
6.7.1 Segregation Ratio Distortion |
|
|
199 | (1) |
|
|
199 | (3) |
|
|
202 | (1) |
|
Impact of Segregation Ratio Distortion in Practical Linkage Analysis |
|
|
203 | (1) |
|
6.7.2 Linkage Analysis Involving Lethal Genes |
|
|
204 | (1) |
|
|
204 | (1) |
|
Two-Locus Recessive Lethal |
|
|
205 | (2) |
|
|
207 | (8) |
|
Chapter 7 Two-Locus Models: Natural Populations |
|
|
215 | (26) |
|
7.1 The Linkage Phase Problem |
|
|
215 | (7) |
|
7.1.1 Linkage Phase Configurations for Two-Locus Models |
|
|
215 | (1) |
|
7.1.2 Linkage Phase Determination |
|
|
216 | (3) |
|
7.1.3 Phase-Unknown Linkage Analysis |
|
|
219 | (2) |
|
7.1.4 Linkage Analysis with a Mixture of Linkage Phases |
|
|
221 | (1) |
|
7.2 Mixtures Of Selfs And Random Mating |
|
|
222 | (19) |
|
|
222 | (2) |
|
7.2.2 Allelic Frequency in Pollen Pool and Outcrossing Rate |
|
|
224 | (1) |
|
Allelic Frequency in Pollen Pool |
|
|
224 | (1) |
|
|
224 | (2) |
|
7.2.3 Estimation of Recombination Fraction |
|
|
226 | (1) |
|
|
227 | (1) |
|
Method II Using EM Algorithm |
|
|
227 | (1) |
|
Method II Using Newton-Raphson Iteration |
|
|
228 | (1) |
|
7.2.4 Efficiency and Variances |
|
|
229 | (1) |
|
Information Content for Codominant Markers |
|
|
229 | (3) |
|
Information Content for Dominant Markers |
|
|
232 | (1) |
|
Empirical Variance and Bias |
|
|
232 | (2) |
|
7.2.5 Mapping Using Cross Between Two Heterozygotes |
|
|
234 | (1) |
|
|
235 | (6) |
|
Chapter 8 Two-Locus Models: Using Linkage Disequilibrium |
|
|
241 | (32) |
|
8.1 Linkage Disequilibrium |
|
|
241 | (10) |
|
8.1.1 Two-Locus Disequilibrium Model |
|
|
241 | (1) |
|
8.1.2 Detection and Estimation |
|
|
242 | (1) |
|
|
242 | (1) |
|
|
243 | (1) |
|
8.1.3 Disequilibrium and Linkage |
|
|
244 | (4) |
|
8.1.4 Disequilibrium-Based Analysis |
|
|
248 | (3) |
|
8.2 The Transmission Disequilibrium Test (TDT) |
|
|
251 | (10) |
|
|
251 | (1) |
|
8.2.2 Transmission/Disequilibrium Test |
|
|
252 | (1) |
|
8.2.3 Genetic Interpretation of TDT |
|
|
253 | (1) |
|
Example: Insulin-Dependent Diabetes Mellitus (IDDM) |
|
|
254 | (1) |
|
8.2.4 Statistical Power of TDT |
|
|
254 | (1) |
|
|
255 | (6) |
|
8.3 Other Disequilibrium Based Analyses |
|
|
261 | (3) |
|
|
261 | (1) |
|
8.3.2 Genotype and Haplotype Relative Risk (GRR and HRR) |
|
|
262 | (2) |
|
8.3.3 Linkage Analysis Using Population Admixture |
|
|
264 | (1) |
|
8.4 Estimation Of Recombination Fraction |
|
|
264 | (9) |
|
8.4.1 Fixed Large Population Size |
|
|
265 | (2) |
|
|
267 | (1) |
|
8.4.3 The Luria-Delbruck Algorithm |
|
|
268 | (1) |
|
8.4.4 Maximum Likelihood Approach |
|
|
268 | (1) |
|
|
269 | (4) |
|
Chapter 9 Linkage Grouping And Locus Ordering |
|
|
273 | (32) |
|
|
273 | (1) |
|
9.1.1 Linkage Grouping Criteria |
|
|
273 | (1) |
|
|
274 | (1) |
|
|
274 | (7) |
|
9.2.1 Introduction to Locus Ordering |
|
|
274 | (2) |
|
9.2.2 Three-Locus Likelihood and The Concept of Interference |
|
|
276 | (2) |
|
9.2.3 Double Crossover Approach |
|
|
278 | (1) |
|
9.2.4 Two-Locus Recombination Fraction Approach |
|
|
279 | (1) |
|
9.2.5 Log Likelihood Approach |
|
|
279 | (2) |
|
9.3 Multiple-Locus Ordering |
|
|
281 | (8) |
|
9.3.1 Multiple-Locus Ordering Statistic |
|
|
281 | (1) |
|
|
281 | (1) |
|
|
282 | (1) |
|
Maximum Likelihood Approach |
|
|
282 | (1) |
|
Minimum Sum or Product of Adjacent Recombination Fractions (SARF and PARF) |
|
|
282 | (1) |
|
Maximum Sum of Adjacent Lod Score (SALOD) |
|
|
283 | (1) |
|
|
284 | (1) |
|
9.3.2 The Traveling Salesman Problem |
|
|
284 | (1) |
|
|
284 | (1) |
|
|
284 | (1) |
|
|
285 | (1) |
|
Simulated Annealing Algorithm |
|
|
286 | (1) |
|
|
287 | (2) |
|
A Combination of SA and BB |
|
|
289 | (1) |
|
9.4 Probability Of Estimated Locus Orders |
|
|
289 | (16) |
|
9.4.1 Likelihood Approach |
|
|
290 | (1) |
|
|
291 | (1) |
|
Percentage of Correct Gene Order |
|
|
291 | (1) |
|
|
292 | (2) |
|
|
294 | (1) |
|
9.4.3 Interval Support for Locus Order |
|
|
295 | (1) |
|
|
295 | (1) |
|
Confidence Interval for Gene Order |
|
|
296 | (1) |
|
|
297 | (1) |
|
Combination of Jackknife and Bootstrap |
|
|
298 | (2) |
|
|
300 | (5) |
|
Chapter 10 Multi-Locus Models |
|
|
305 | (54) |
|
10.1 Interpretation Of Map Distance |
|
|
305 | (5) |
|
10.1.1 Map and Physical Distances |
|
|
305 | (2) |
|
10.1.2 Possible Genetic Control of Crossover |
|
|
307 | (1) |
|
10.1.3 Genome Structure Variation Among Parents |
|
|
308 | (2) |
|
|
310 | (8) |
|
|
310 | (1) |
|
10.2.2 Crossover in a Three-Locus Model |
|
|
311 | (1) |
|
|
311 | (2) |
|
|
313 | (1) |
|
10.2.3 Likelihood Function |
|
|
314 | (1) |
|
|
315 | (1) |
|
|
316 | (2) |
|
|
318 | (12) |
|
|
318 | (1) |
|
10.3.2 Commonly Used Map Functions |
|
|
319 | (1) |
|
|
320 | (1) |
|
|
320 | (2) |
|
|
322 | (2) |
|
|
324 | (4) |
|
10.3.3 Comparison of Commonly Used Mapping Functions |
|
|
328 | (2) |
|
10.4 Estimation Of Multi-Locus Map Distance |
|
|
330 | (15) |
|
|
331 | (1) |
|
|
331 | (1) |
|
|
332 | (1) |
|
|
333 | (1) |
|
Variance of Estimated Map Distance |
|
|
333 | (1) |
|
Least Square Approach Using Lod Score |
|
|
334 | (1) |
|
|
335 | (2) |
|
10.4.3 Joint Estimation of Recombination and Interference |
|
|
337 | (1) |
|
10.4.4 Simulation Approach |
|
|
338 | (1) |
|
|
338 | (2) |
|
|
340 | (1) |
|
|
341 | (2) |
|
Multilocus Feasible Map Function |
|
|
343 | (1) |
|
|
344 | (1) |
|
10.5 Marker Coverage And Map Density" |
|
|
345 | (14) |
|
|
345 | (1) |
|
10.5.2 Factors Influencing Marker Coverage and Map Density |
|
|
346 | (1) |
|
|
346 | (1) |
|
Marker and Crossover Distribution |
|
|
346 | (2) |
|
|
348 | (1) |
|
|
348 | (1) |
|
10.5.3 Prediction of Marker Coverage and Map Density |
|
|
349 | (1) |
|
Prediction of Map Density and Marker Coverage |
|
|
349 | (4) |
|
|
353 | (6) |
|
Chapter 11 Linkage Map Merging |
|
|
359 | (16) |
|
|
359 | (3) |
|
|
359 | (2) |
|
11.1.2 Hypothesis Tests Are Needed |
|
|
361 | (1) |
|
11.1.3 Why Linkage Map Pooling and Bridging? |
|
|
361 | (1) |
|
Cross Validation of Mapping Strategies |
|
|
361 | (1) |
|
Applications of Genome Information to Applied Plant and Animal Breeding |
|
|
361 | (1) |
|
|
362 | (1) |
|
Structures of Genome Database |
|
|
362 | (1) |
|
11.2 Factors Related To Linkage Map Merging |
|
|
362 | (2) |
|
11.2.1 Biology and Linkage Map Merging |
|
|
362 | (1) |
|
Mating and Genetic Marker Systems |
|
|
362 | (1) |
|
|
363 | (1) |
|
11.2.2 Statistics and Linkage Map Merging |
|
|
363 | (1) |
|
|
363 | (1) |
|
Different Screening Strategies |
|
|
364 | (1) |
|
Missing Data and Missing Linkage Information |
|
|
364 | (1) |
|
Sample Size and Data Quality |
|
|
364 | (1) |
|
11.3 Hypotheses About Gene Orders |
|
|
364 | (4) |
|
11.3.1 Heterogeneity Test between Two-Point Recombination Fractions |
|
|
365 | (1) |
|
11.3.2 Likelihood Ratio Tests Among Locus Orders and Multipoint Map Distances |
|
|
366 | (1) |
|
11.3.3 Nonparametric Heterogeneity Tests for Locus Orders |
|
|
367 | (1) |
|
|
368 | (7) |
|
11.4.1 Anchor Map Approach |
|
|
368 | (1) |
|
11.4.2 Estimation of Missing Recombination Fractions Using EM Algorithm |
|
|
369 | (1) |
|
11.4.3 Linkage Map Bridging |
|
|
370 | (1) |
|
|
371 | (4) |
|
Chapter 12 QTL Mapping: Introduction |
|
|
375 | (12) |
|
|
375 | (2) |
|
12.2 Quantitative Genetics Models |
|
|
377 | (3) |
|
|
377 | (2) |
|
12.2.2 Multiple-Locus Model |
|
|
379 | (1) |
|
12.3 Data For QTL Mapping |
|
|
380 | (7) |
|
|
380 | (1) |
|
|
381 | (1) |
|
|
381 | (1) |
|
|
381 | (6) |
|
Chapter 13 QTL Mapping: Single-Marker Analysis |
|
|
387 | (30) |
|
|
387 | (2) |
|
13.2 Single-Marker Analysis In Backcross Progeny |
|
|
389 | (13) |
|
13.2.1 Joint Segregation of QTL and Marker Genotypes |
|
|
390 | (1) |
|
13.2.2 Simple t-Test Using Backcross Progeny |
|
|
391 | (2) |
|
Example: Analysis of the Barley Malt Extract Data Using t-Test |
|
|
393 | (1) |
|
13.2.3 Analysis of Variance Using Backcross Progeny |
|
|
394 | (1) |
|
13.2.4 Linear Regression Using Backcross Progeny |
|
|
394 | (2) |
|
Example: Analysis of the Barley Data Using Linear Regression |
|
|
396 | (1) |
|
13.2.5 A Likelihood Approach Using Backcross Progeny |
|
|
396 | (3) |
|
Example: Analysis of the Barley Data Using a Likelihood Approach |
|
|
399 | (3) |
|
13.3 Single-Marker Analysis Using F2 Progeny |
|
|
402 | (15) |
|
13.3.1 Joint Segregation of QTL and Marker Genotypes |
|
|
402 | (2) |
|
13.3.2 Analysis of Variance Using F2 Progeny |
|
|
404 | (1) |
|
|
404 | (1) |
|
|
405 | (1) |
|
13.3.3 Linear Regression Using F2 Progeny |
|
|
406 | (1) |
|
|
406 | (2) |
|
|
408 | (1) |
|
13.3.4 Likelihood Approach |
|
|
409 | (1) |
|
|
409 | (2) |
|
|
411 | (1) |
|
13.3.5 Use of Trans Dominant Linked Markers in F2 Progeny |
|
|
411 | (2) |
|
|
413 | (1) |
|
|
414 | (3) |
|
Chapter 14 QTL Mapping: Interval Mapping |
|
|
417 | (42) |
|
|
417 | (1) |
|
14.2 Interval Mapping Of QTL Using Backcross Progeny |
|
|
418 | (17) |
|
14.2.1 Joint Segregation of QTL and Markers |
|
|
418 | (1) |
|
14.2.2 A Likelihood Approach for QTL Mapping with Backcross Progeny |
|
|
419 | (2) |
|
Example: A Likelihood Approach |
|
|
421 | (2) |
|
14.2.3 A Nonlinear Regression Approach |
|
|
423 | (1) |
|
|
423 | (2) |
|
|
425 | (1) |
|
Confidence Interval for the Parameters |
|
|
425 | (1) |
|
Example: Estimation, Hypothesis Tests and Confidence Interval |
|
|
426 | (1) |
|
Multiple Environments Model |
|
|
427 | (2) |
|
Implementation of the Nonlinear Regression |
|
|
429 | (1) |
|
Example: The Multiple Environments Problem |
|
|
430 | (2) |
|
14.2.4 The Linear Regression Approach |
|
|
432 | (3) |
|
14.3 Interval Mapping Using F2 Progeny |
|
|
435 | (9) |
|
14.3.1 Joint Segregation of QTLs and Markers |
|
|
435 | (2) |
|
14.3.2 A Likelihood Approach for QTL Analysis Using F2 Progeny |
|
|
437 | (1) |
|
|
437 | (2) |
|
|
439 | (1) |
|
14.3.3 Regression Approach |
|
|
440 | (1) |
|
Nonlinear Regression Approach (Codominant Markers) |
|
|
440 | (2) |
|
Linear Regression (Codominant Markers) |
|
|
442 | (1) |
|
Linear Regression (Dominant Markers) |
|
|
442 | (2) |
|
14.3.4 Problems with the Simple Interval Mapping Approaches |
|
|
444 | (1) |
|
14.4 Composite Interval Mapping |
|
|
444 | (15) |
|
|
444 | (2) |
|
|
446 | (1) |
|
|
447 | (1) |
|
14.4.4 CIM Using Regression |
|
|
448 | (1) |
|
Example: CIM Using Regression |
|
|
449 | (3) |
|
|
452 | (1) |
|
14.4.6 CIM Using F2 Progeny |
|
|
453 | (2) |
|
14.4.7 Advantages of the CIM |
|
|
455 | (1) |
|
|
455 | (1) |
|
|
456 | (3) |
|
Chapter 15 QTL Mapping: Natural Populations |
|
|
459 | (22) |
|
|
459 | (1) |
|
15.2 Open-Pollinated Populations |
|
|
460 | (9) |
|
15.2.1 Joint Segregation of QTL and Markers |
|
|
460 | (1) |
|
|
461 | (1) |
|
15.2.3 Complete Outcrossing |
|
|
462 | (2) |
|
|
464 | (2) |
|
15.2.5 Expectation of the Additive Contrast |
|
|
466 | (3) |
|
|
469 | (12) |
|
15.3.1 Model for QTL Locating On Marker |
|
|
469 | (1) |
|
|
469 | (1) |
|
|
469 | (1) |
|
|
470 | (2) |
|
Expected Square of the Sib-Pair Difference |
|
|
472 | (1) |
|
Solutions for the Linear Model |
|
|
472 | (2) |
|
|
474 | (4) |
|
15.3.3 Implementation of the Sib-Pair Method |
|
|
478 | (1) |
|
|
479 | (2) |
|
Chapter 16 QTL Mapping: Statistical Power |
|
|
481 | (12) |
|
|
481 | (1) |
|
16.2 Single QTL Detection Power |
|
|
482 | (5) |
|
16.2.1 Single Marker Analysis |
|
|
482 | (3) |
|
|
485 | (2) |
|
|
487 | (6) |
|
|
487 | (1) |
|
16.3.2 A Simulation Approach |
|
|
488 | (1) |
|
16.3.3 The Percent of Genetic Variation Explained by QTL |
|
|
488 | (2) |
|
|
490 | (3) |
|
Chapter 17 QTL Mapping: Future Considerations |
|
|
493 | (26) |
|
17.1 Problems With QTL Mapping |
|
|
493 | (1) |
|
17.1.1 Multiple-QTL Model |
|
|
493 | (1) |
|
Practical Implementations |
|
|
493 | (1) |
|
|
493 | (2) |
|
17.1.2 Multiple-Test Problem |
|
|
495 | (1) |
|
17.1.3 Multiple Related Traits Problem |
|
|
496 | (1) |
|
17.1.4 Are the QTLs Real? |
|
|
497 | (1) |
|
|
498 | (4) |
|
|
498 | (2) |
|
17.2.2 High Resolution QTL Mapping |
|
|
500 | (1) |
|
Quantitative Analysis of the Trait |
|
|
500 | (2) |
|
Conditional Marker Analysis |
|
|
502 | (1) |
|
Mapping Population Extension |
|
|
502 | (1) |
|
|
502 | (5) |
|
17.3.1 Bulk Segregant Analysis |
|
|
502 | (4) |
|
17.3.2 Selective Genotyping |
|
|
506 | (1) |
|
17.3.3 Increase Marker Coverage |
|
|
506 | (1) |
|
|
506 | (1) |
|
Increase Useful Progeny Size |
|
|
507 | (1) |
|
|
507 | (2) |
|
|
507 | (1) |
|
Limitations of QTL Mapping |
|
|
508 | (1) |
|
17.4.2 Quantitative Genetics, Genomic Mapping and Molecular Biology |
|
|
508 | (1) |
|
|
509 | (10) |
|
17.5.1 Genetic and Physical Maps |
|
|
510 | (1) |
|
17.5.2 Trait - Maps - Sequence |
|
|
511 | (1) |
|
17.5.3 Metabolic Genetic Model (MGM) |
|
|
512 | (2) |
|
|
514 | (5) |
|
Chapter 18 Computer Tools |
|
|
519 | (26) |
|
18.1 Computer Tools For Genomic Data Analysis |
|
|
520 | (6) |
|
18.1.1 Linkage Analysis and Map Construction |
|
|
520 | (3) |
|
18.1.2 Specific Packages for QTL Mapping |
|
|
523 | (1) |
|
18.1.3 QTL Analysis Using SAS |
|
|
523 | (1) |
|
Interval Mapping Using Nonlinear Regression |
|
|
524 | (1) |
|
Composite Interval Mapping Using Regression |
|
|
525 | (1) |
|
18.2 Future Considerations |
|
|
526 | (3) |
|
18.2.1 Commercial Quality Software Is Needed |
|
|
526 | (2) |
|
18.2.2 Structure of Bioinformation Analysis and Management System (BIAMS) |
|
|
528 | (1) |
|
18.2.3 Data Quality Problem |
|
|
528 | (1) |
|
18.3 Plant Genome Research Initiative (PGRI) |
|
|
529 | (16) |
|
|
530 | (1) |
|
|
531 | (2) |
|
18.3.3 Linkage Analysis and Map Construction |
|
|
533 | (5) |
|
18.3.4 Linkage Map Merging |
|
|
538 | (1) |
|
18.3.5 QTL Analysis and Breeding Plan |
|
|
538 | (3) |
|
|
541 | (1) |
|
|
541 | (2) |
|
|
543 | (2) |
|
Chapter 19 Resampling And Simulation In Genomics |
|
|
545 | (26) |
|
|
545 | (1) |
|
|
546 | (6) |
|
|
546 | (1) |
|
|
546 | (1) |
|
|
546 | (1) |
|
Bootstrap Mean, Variance and Bias |
|
|
547 | (1) |
|
Bootstrap Confidence Interval |
|
|
547 | (1) |
|
Example: Bootstrap Approach |
|
|
547 | (2) |
|
|
549 | (1) |
|
|
549 | (1) |
|
Jackknife Mean, Variance and Bias |
|
|
549 | (1) |
|
19.2.3 Combination of Jackknife and Bootstrap |
|
|
549 | (1) |
|
19.2.4 Shuffling or Permutation Test |
|
|
550 | (1) |
|
Shuffling a Sample and Permutation |
|
|
550 | (1) |
|
Empirical Distribution of the Test Statistic |
|
|
551 | (1) |
|
Example: Permutation Test |
|
|
551 | (1) |
|
19.3 Computer Simulations |
|
|
552 | (3) |
|
|
552 | (1) |
|
19.3.2 Random Sampling from Continuous Distributions |
|
|
553 | (1) |
|
19.3.3 Random Sampling from Discrete Distributions |
|
|
554 | (1) |
|
19.4 Simulation Of Discrete Markers |
|
|
555 | (2) |
|
19.4.1 A Joint Distribution Approach for Two Loci |
|
|
555 | (1) |
|
19.4.2 A Conditional Frequency Approach for Multiple Loci |
|
|
556 | (1) |
|
19.4.3 Conversion of Map Distance to Recombination Fraction |
|
|
557 | (1) |
|
19.5 Quantitative Traits: A Two-Gene Model |
|
|
557 | (3) |
|
|
557 | (1) |
|
19.5.2 Model Specification |
|
|
558 | (1) |
|
19.5.3 Simulation of the Trait Values |
|
|
559 | (1) |
|
19.6 Quantitative Trait: Multiple-Gene Model |
|
|
560 | (2) |
|
19.6.1 Multiple-Gene Model |
|
|
560 | (1) |
|
19.6.2 Distribution of Genetic Effects |
|
|
560 | (2) |
|
19.6.3 Simulation of Trait Values |
|
|
562 | (1) |
|
19.7 Multiple Quantitative Traits |
|
|
562 | (4) |
|
|
562 | (1) |
|
19.7.2 Model Specification |
|
|
563 | (1) |
|
19.7.3 Linkage and Genetic Correlation |
|
|
564 | (1) |
|
19.7.4 Multinomial Distribution |
|
|
565 | (1) |
|
19.8 Simulation Of Data With Multiple Generations |
|
|
566 | (5) |
|
|
566 | (1) |
|
|
567 | (1) |
|
|
568 | (2) |
|
|
570 | (1) |
|
|
570 | (1) |
Glossary |
|
571 | (8) |
Bibliography |
|
579 | (18) |
Author Index |
|
597 | (4) |
Subject Index |
|
601 | |