Muutke küpsiste eelistusi

Statistical Inference and Machine Learning for Big Data 2022 ed. [Pehme köide]

  • Formaat: Paperback / softback, 431 pages, kõrgus x laius: 279x210 mm, kaal: 1116 g, 66 Illustrations, color; 27 Illustrations, black and white; XXIV, 431 p. 93 illus., 66 illus. in color., 1 Paperback / softback
  • Sari: Springer Series in the Data Sciences
  • Ilmumisaeg: 01-Dec-2023
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 303106786X
  • ISBN-13: 9783031067860
  • Pehme köide
  • Hind: 132,08 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 155,39 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 431 pages, kõrgus x laius: 279x210 mm, kaal: 1116 g, 66 Illustrations, color; 27 Illustrations, black and white; XXIV, 431 p. 93 illus., 66 illus. in color., 1 Paperback / softback
  • Sari: Springer Series in the Data Sciences
  • Ilmumisaeg: 01-Dec-2023
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 303106786X
  • ISBN-13: 9783031067860
This book presents a variety of advanced statistical methods at a level suitable for advanced undergraduate and graduate students as well as for others interested in familiarizing themselves with these important subjects. It proceeds to illustrate these methods in the context of real-life applications in a variety of areas such as genetics, medicine, and environmental problems.





The book begins in Part I by outlining various data types and by indicating how these are normally represented graphically and subsequently analyzed. In Part II, the basic tools in probability and statistics are introduced with special reference to symbolic data analysis. The most useful and relevant results pertinent to this book are retained. In Part III, the focus is on the tools of machine learning whereas in Part IV the computational aspects of BIG DATA are presented.





This book would serve as a handy desk reference for statistical methods at the undergraduate and graduate level as well as be useful in courses which aim to provide an overview of modern statistics and its applications.
I. Introduction to Big Data.- Examples of Big Data.- II. Statistical
Inference for Big Data.- Basic Concepts in Probability.- Basic Concepts in
Statistics.- Multivariate Methods.- Nonparametric Statistics.- Exponential
Tilting and its Applications.- Counting Data Analysis.- Time Series Methods.-
Estimating Equations.- Symbolic Data Analysis.- III Machine Learning for Big
Data.- Tools for Machine Learning.- Neural Networks.- IV Computational
Methods for Statistical Inference.- Bayesian Computation Methods.