About the Authors |
|
xv | |
Preface |
|
xvii | |
Acknowledgments |
|
xxiii | |
|
Chapter 1 Descriptive Statistics I: Univariate Statistics |
|
|
1 | (22) |
|
|
1 | (1) |
|
1.2 Types of Statistical Data |
|
|
2 | (2) |
|
1.3 Univariate Data Visualization |
|
|
4 | (4) |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
6 | (2) |
|
1.4 Measures of Central Tendency |
|
|
8 | (2) |
|
|
8 | (1) |
|
|
8 | (1) |
|
|
9 | (1) |
|
1.4.4 Which Measure of Central Tendency to Use? |
|
|
9 | (1) |
|
1.5 Measures of Variation |
|
|
10 | (2) |
|
|
10 | (1) |
|
1.5.2 Interquartile Range |
|
|
10 | (1) |
|
1.5.3 Which Measure of Variation to Use? |
|
|
11 | (1) |
|
1.6 Visualizing Measures of Variation |
|
|
12 | (1) |
|
1.6.1 Visualizing Mean and Standard Deviation |
|
|
12 | (1) |
|
1.6.2 Visualizing Median and IQR: The Box Plot |
|
|
12 | (1) |
|
|
13 | (1) |
|
1.8 Using MATLAB for Univariate Descriptive Statistics |
|
|
14 | (3) |
|
1.8.1 Visualization of Univariate Data |
|
|
14 | (1) |
|
1.8.2 Calculating Measures of Central Tendency |
|
|
15 | (1) |
|
1.8.3 Calculating Measures of Variation |
|
|
15 | (1) |
|
1.8.4 Visualizing Measures of Variation |
|
|
16 | (1) |
|
|
17 | (6) |
|
Chapter 2 Descriptive Statistics II: Bivariate and Multivariate Statistics |
|
|
23 | (34) |
|
|
23 | (1) |
|
2.2 Visualizing Bivariate Statistics |
|
|
24 | (5) |
|
2.2.1 Two Categorical Variables |
|
|
24 | (1) |
|
2.2.2 Combining Categorical and Continuous Variables |
|
|
25 | (1) |
|
2.2.3 Two Continuous Variables |
|
|
25 | (2) |
|
2.2.4 Which Variable Should Go on Which Axis? |
|
|
27 | (1) |
|
2.2.5 General Comments on Choice of Visualization |
|
|
28 | (1) |
|
2.3 Measures of Variation |
|
|
29 | (1) |
|
|
29 | (1) |
|
|
30 | (1) |
|
|
30 | (7) |
|
2.4.1 Pearson's Correlation Coefficient |
|
|
30 | (5) |
|
2.4.2 Spearman's Rank Correlation Coefficient |
|
|
35 | (2) |
|
2.4.3 Which Measure of Correlation to Use? |
|
|
37 | (1) |
|
|
37 | (6) |
|
2.5.1 Using the Best-Fit Line to Make Predictions |
|
|
39 | (1) |
|
2.5.2 Fitting Nonlinear Models |
|
|
40 | (1) |
|
2.5.3 Fitting Higher-Order Polynomials |
|
|
40 | (3) |
|
2.6 Bland-Altman Analysis |
|
|
43 | (3) |
|
2.6.1 The Bland-Altman Plot |
|
|
44 | (2) |
|
|
46 | (1) |
|
2.8 Descriptive Bivariate and Multivariate Statistics Using MATLAB |
|
|
47 | (5) |
|
2.8.1 Visualizing Bivariate Data |
|
|
47 | (1) |
|
|
48 | (1) |
|
|
49 | (1) |
|
2.8.4 Calculating Best-Fit Lines |
|
|
50 | (1) |
|
2.8.5 Bland-Altman Analysis |
|
|
51 | (1) |
|
|
52 | (1) |
|
|
52 | (5) |
|
Chapter 3 Descriptive Statistics III: ROC Analysis |
|
|
57 | (14) |
|
|
57 | (1) |
|
|
58 | (3) |
|
3.2.1 Sensitivity and Specificity |
|
|
59 | (1) |
|
3.2.2 Positive and Negative Predictive Values |
|
|
59 | (1) |
|
3.2.3 Example Calculation of Se, Sp, PPV and N PV |
|
|
60 | (1) |
|
|
61 | (2) |
|
|
63 | (1) |
|
3.5 Using MATLAB for ROC Analysis |
|
|
63 | (1) |
|
|
64 | (1) |
|
|
64 | (7) |
|
Chapter 4 Inferential Statistics h Basic Concepts |
|
|
71 | (20) |
|
|
71 | (1) |
|
|
72 | (1) |
|
|
72 | (5) |
|
4.3.1 Probabilities of Single Events |
|
|
73 | (1) |
|
4.3.2 Probabilities of Multiple Events |
|
|
74 | (3) |
|
4.4 Probability Distributions |
|
|
77 | (2) |
|
4.4.1 The Normal Distribution |
|
|
77 | (2) |
|
4.5 Why the Normal Distribution Is so Important: The Central Limit Theorem |
|
|
79 | (1) |
|
4.6 Standard Error of the Mean |
|
|
80 | (3) |
|
4.7 Confidence Intervals of the Mean |
|
|
83 | (2) |
|
|
85 | (1) |
|
4.9 Probability Distributions and Measures of Reliability Using MATLAB |
|
|
85 | (2) |
|
4.9.1 Probability Distributions |
|
|
85 | (1) |
|
4.9.2 Standard Error of the Mean |
|
|
86 | (1) |
|
4.9.3 Confidence Interval of the Mean |
|
|
86 | (1) |
|
|
87 | (1) |
|
|
87 | (4) |
|
Chapter 5 Inferential Statistics II: Parametric Hypothesis Testing |
|
|
91 | (28) |
|
|
91 | (1) |
|
|
91 | (2) |
|
5.3 Types of Data for Hypothesis Tests |
|
|
93 | (1) |
|
5.4 The r-distribution and Student's t-test |
|
|
94 | (1) |
|
5.5 One-Sample Student's t-test |
|
|
95 | (4) |
|
5.6 Confidence Intervals for Small Samples |
|
|
99 | (4) |
|
5.7 Two Sample Student's t-test |
|
|
103 | (4) |
|
|
103 | (2) |
|
|
105 | (2) |
|
5.7.3 Paired vs. Unpaired t-test |
|
|
107 | (1) |
|
5.8 1-tailed vs. 2-tailed Tests |
|
|
107 | (2) |
|
5.9 Hypothesis Testing with Larger Sample Sizes: The z-test |
|
|
109 | (1) |
|
|
110 | (1) |
|
5.11 Parametric Hypothesis Testing Using MATLAB |
|
|
111 | (2) |
|
|
111 | (1) |
|
|
112 | (1) |
|
5.11.3 The t-distribution |
|
|
112 | (1) |
|
|
113 | (1) |
|
|
113 | (6) |
|
Chapter 6 Inferential Statistics III: Nonparametric Hypothesis Testing |
|
|
119 | (28) |
|
|
119 | (1) |
|
|
120 | (4) |
|
6.3 Wilcoxon Signed-Rank Test |
|
|
124 | (4) |
|
|
128 | (4) |
|
|
132 | (5) |
|
6.5.1 One-Sample Chi-Square Test |
|
|
132 | (2) |
|
6.5.2 Two-Sample Chi-Square Test for Independence |
|
|
134 | (3) |
|
|
137 | (1) |
|
6.7 Nonparametric Hypothesis Testing Using MATLAB |
|
|
138 | (2) |
|
|
138 | (1) |
|
6.7.2 Wilcoxon Signed-Rank Test |
|
|
138 | (1) |
|
6.7.3 Mann-Whitney U Test |
|
|
139 | (1) |
|
|
139 | (1) |
|
|
140 | (1) |
|
|
141 | (6) |
|
Chapter 7 Inferential Statistics IV: Choosing a Hypothesis Test |
|
|
147 | (26) |
|
|
147 | (1) |
|
7.2 Visual Methods to Investigate Whether a Sample Fits a Normal Distribution |
|
|
148 | (5) |
|
|
148 | (1) |
|
7.2.2 Quantile-Quantile Plots |
|
|
149 | (4) |
|
7.3 Numerical Methods to Investigate Whether a Sample Fits a Normal Distribution |
|
|
153 | (8) |
|
7.3.1 Probability Plot Correlation Coefficient |
|
|
153 | (1) |
|
|
154 | (1) |
|
|
154 | (2) |
|
|
156 | (2) |
|
7.3.5 Chi-Square Test for Normality |
|
|
158 | (3) |
|
7.4 Should We Use a Parametric or Nonparametric Test? |
|
|
161 | (1) |
|
7.5 Does It Matter if We Use the Wrong Test? |
|
|
162 | (1) |
|
|
163 | (1) |
|
7.7 Assessing Data Distributions Using MATLAB |
|
|
164 | (3) |
|
|
164 | (1) |
|
|
165 | (2) |
|
|
167 | (1) |
|
|
167 | (6) |
|
Chapter 8 Inferential Statistics V: Multiple and Multivariate Hypothesis Testing |
|
|
173 | (28) |
|
|
173 | (1) |
|
8.2 Multiple Hypothesis Testing |
|
|
174 | (9) |
|
8.2.1 Bonferroni's Correction |
|
|
174 | (2) |
|
8.2.2 Analysis of Variance (ANOVA) |
|
|
176 | (6) |
|
Anova With Unequal Sample Sizes |
|
|
182 | (1) |
|
8.3 Multivariate Hypothesis Testing |
|
|
183 | (7) |
|
8.3.1 Hotelling's T2 Test |
|
|
184 | (4) |
|
Two Sample Hotelling's T1 Test |
|
|
188 | (1) |
|
8.3.2 Multivariate Analysis of Variance (MANOVA) |
|
|
189 | (1) |
|
8.4 Which Test Should We Use? |
|
|
190 | (2) |
|
|
192 | (1) |
|
8.6 Multiple and Multivariate Hypothesis Testing Using MATLAB |
|
|
192 | (4) |
|
8.6.1 Bonferroni's Correction |
|
|
192 | (1) |
|
|
193 | (1) |
|
|
193 | (2) |
|
|
195 | (1) |
|
|
196 | (1) |
|
|
196 | (5) |
|
Chapter 9 Experimental Design and Sample Size Calculations |
|
|
201 | (16) |
|
|
201 | (1) |
|
9.2 Experimental and Observational Studies |
|
|
201 | (3) |
|
9.2.1 Observational Studies |
|
|
202 | (1) |
|
9.2.2 Experimental Studies |
|
|
202 | (1) |
|
9.2.3 Showing Cause-and-Effect |
|
|
203 | (1) |
|
9.3 Random and Systematic Error [ Bias) |
|
|
204 | (1) |
|
9.4 Reducing Random and Systematic Errors |
|
|
205 | (3) |
|
9.4.1 Blocking (Matching) Test and Control Subjects |
|
|
205 | (1) |
|
|
205 | (1) |
|
9.4.3 Multiple Measurement |
|
|
206 | (1) |
|
|
207 | (1) |
|
9.5 Sample Size and Power Calculations |
|
|
208 | (3) |
|
9.5.1 Illustration of a Power Calculation for a Single Sample t-test |
|
|
209 | (1) |
|
9.5.2 Illustration of a Sample Size Calculation |
|
|
210 | (1) |
|
|
211 | (1) |
|
9.7 Power and Sample Size Calculations Using MATLAB |
|
|
212 | (1) |
|
9.7.1 Sample Size Calculations |
|
|
212 | (1) |
|
|
213 | (1) |
|
|
213 | (1) |
|
|
213 | (4) |
|
Chapter 10 Statistical Shape Models |
|
|
217 | (12) |
|
|
217 | (1) |
|
10.2 SSMs and Dimensionality Reduction |
|
|
218 | (2) |
|
|
220 | (3) |
|
10.3.1 Parameterize the Shape |
|
|
220 | (1) |
|
10.3.2 Align the Centroids |
|
|
221 | (1) |
|
10.3.3 Compute the Mean Shape Vector |
|
|
221 | (1) |
|
10.3.4 Compute the Covariance Matrix |
|
|
222 | (1) |
|
10.3.5 Compute the Eigenvectors and Eigenvalues |
|
|
222 | (1) |
|
10.4 Producing New Shapes From an SSM |
|
|
223 | (1) |
|
10.5 Biomedical Applications of SSMs |
|
|
224 | (1) |
|
|
225 | (1) |
|
10.7 Statistical Shape Modeling Using MATLAB |
|
|
226 | (1) |
|
|
226 | (1) |
|
|
226 | (3) |
|
Chapter 11 MATLAB Case Study on Descriptive and Inferential Statistics |
|
|
229 | (6) |
|
|
229 | (1) |
|
|
230 | (1) |
|
11.3 Part A: Measuring Myocardium Thickness |
|
|
230 | (1) |
|
11.4 Part B: Intraobserver Variability |
|
|
231 | (1) |
|
11.5 Part C: Sample Analysis |
|
|
231 | (1) |
|
|
232 | (3) |
Appendix A: Statistical Tables |
|
235 | (10) |
References |
|
245 | (2) |
Index |
|
247 | |