Preface |
|
xvii | |
|
1 Why understand statistics? |
|
|
1 | (2) |
|
|
1 | (1) |
|
|
2 | (1) |
|
|
2 | (1) |
|
2 Probability and making decisions |
|
|
3 | (52) |
|
|
3 | (1) |
|
|
4 | (3) |
|
|
4 | (1) |
|
2.2.2 Generating random digits |
|
|
5 | (1) |
|
2.2.3 Pseudo random digits |
|
|
6 | (1) |
|
2.3 Denning probabilities |
|
|
7 | (8) |
|
2.3.1 Defining probabilities -- Equally likely outcomes |
|
|
8 | (3) |
|
2.3.2 Defining probabilities -- Relative frequencies |
|
|
11 | (2) |
|
2.3.3 Defining probabilities -- Subjective probability and expected monetary value |
|
|
13 | (2) |
|
2.4 Axioms of probability |
|
|
15 | (1) |
|
2.5 The addition rule of probability |
|
|
15 | (3) |
|
|
16 | (2) |
|
2.6 Conditional probability |
|
|
18 | (7) |
|
2.6.1 Conditioning on information |
|
|
18 | (1) |
|
2.6.2 Conditional probability and the multiplicative rule |
|
|
18 | (2) |
|
|
20 | (3) |
|
|
23 | (2) |
|
|
25 | (4) |
|
2.7.1 Law of total probability |
|
|
26 | (1) |
|
2.7.2 Bayes' theorem for two events |
|
|
27 | (1) |
|
2.7.3 Bayes' theorem for any number of events |
|
|
28 | (1) |
|
|
29 | (2) |
|
2.9 Permutations and combinations |
|
|
31 | (2) |
|
2.10 Simple random sample |
|
|
33 | (2) |
|
|
35 | (2) |
|
|
35 | (1) |
|
2.11.2 Summary of main results |
|
|
36 | (1) |
|
2.11.3 MATLAB® and R commands |
|
|
36 | (1) |
|
|
37 | (18) |
|
3 Graphical displays of data and descriptive statistics |
|
|
55 | (82) |
|
|
55 | (3) |
|
3.2 Samples and populations |
|
|
58 | (3) |
|
|
61 | (18) |
|
|
61 | (1) |
|
|
62 | (3) |
|
|
65 | (3) |
|
|
68 | (1) |
|
|
68 | (2) |
|
|
70 | (1) |
|
3.3.7 Line chart for discrete variables |
|
|
70 | (3) |
|
3.3.8 Histogram and cumulative frequency polygon for continuous variables |
|
|
73 | (4) |
|
|
77 | (2) |
|
3.4 Numerical summaries of data |
|
|
79 | (16) |
|
3.4.1 Population and sample |
|
|
79 | (2) |
|
3.4.2 Measures of location |
|
|
81 | (9) |
|
|
90 | (5) |
|
|
95 | (2) |
|
3.6 Outlying values and robust statistics |
|
|
97 | (2) |
|
|
97 | (1) |
|
|
98 | (1) |
|
|
99 | (4) |
|
3.7.1 Calculation of the mean and standard deviation for discrete data |
|
|
99 | (1) |
|
3.7.2 Grouped continuous data [ Mean and standard deviation for grouped continuous data] |
|
|
100 | (1) |
|
3.7.3 Mean as center of gravity |
|
|
101 | (2) |
|
3.7.4 Case study of wave stress on offshore structure |
|
|
103 | (1) |
|
3.8 Shape of distributions |
|
|
103 | (5) |
|
|
103 | (1) |
|
|
104 | (1) |
|
3.8.3 Some contrasting histograms |
|
|
105 | (3) |
|
|
108 | (5) |
|
|
108 | (2) |
|
3.9.2 Histogram for bivariate data |
|
|
110 | (1) |
|
3.9.3 Parallel coordinates plot |
|
|
111 | (2) |
|
3.10 Descriptive time series |
|
|
113 | (8) |
|
3.10.1 Definition of time series |
|
|
113 | (1) |
|
3.10.2 Missing values in time series |
|
|
114 | (1) |
|
3.10.3 Decomposition of time series |
|
|
114 | (1) |
|
3.10.3.1 Trend -- Centered moving average |
|
|
114 | (1) |
|
3.10.3.2 Seasonal component -- Additive monthly model |
|
|
115 | (1) |
|
3.10.3.3 Seasonal component -- Multiplicative monthly model |
|
|
115 | (1) |
|
3.10.3.4 Seasonal adjustment |
|
|
116 | (1) |
|
|
116 | (3) |
|
|
119 | (2) |
|
|
121 | (2) |
|
|
121 | (1) |
|
3.11.2 Summary of main results |
|
|
121 | (1) |
|
3.11.3 MATLAB and R commands |
|
|
122 | (1) |
|
|
123 | (14) |
|
4 Discrete probability distributions |
|
|
137 | (38) |
|
4.1 Discrete random variables |
|
|
137 | (3) |
|
4.1.1 Definition of a discrete probability distribution |
|
|
138 | (1) |
|
|
139 | (1) |
|
|
140 | (2) |
|
|
140 | (1) |
|
4.2.2 Defining the Bernoulli distribution |
|
|
141 | (1) |
|
4.2.3 Mean and variance of the Bernoulli distribution |
|
|
141 | (1) |
|
4.3 Binomial distribution |
|
|
142 | (8) |
|
|
142 | (1) |
|
4.3.2 Defining the Binomial distribution |
|
|
142 | (5) |
|
4.3.3 A model for conductivity |
|
|
147 | (1) |
|
4.3.4 Mean and variance of the binomial distribution |
|
|
148 | (1) |
|
4.3.5 Random deviates from binomial distribution |
|
|
149 | (1) |
|
4.3.6 Fitting a binomial distribution |
|
|
149 | (1) |
|
4.4 Hypergeometric distribution |
|
|
150 | (3) |
|
4.4.1 Defining the hypergeometric distribution |
|
|
151 | (1) |
|
4.4.2 Random deviates from the hypergeometric distribution |
|
|
152 | (1) |
|
4.4.3 Fitting the hypergeometric distribution |
|
|
152 | (1) |
|
4.5 Negative binomial distribution |
|
|
153 | (5) |
|
4.5.1 The geometric distribution |
|
|
153 | (1) |
|
4.5.2 Defining the negative binomial distribution |
|
|
154 | (1) |
|
4.5.3 Applications of negative binomial distribution |
|
|
155 | (2) |
|
4.5.4 Fitting a negative binomial distribution |
|
|
157 | (1) |
|
4.5.5 Random numbers from a negative binomial distribution |
|
|
157 | (1) |
|
|
158 | (4) |
|
4.6.1 Defining a Poisson process in time |
|
|
158 | (1) |
|
4.6.2 Superimposing Poisson processes |
|
|
158 | (1) |
|
4.6.3 Spatial Poisson process |
|
|
158 | (1) |
|
4.6.4 Modifications to Poisson processes |
|
|
159 | (1) |
|
4.6.5 Poisson distribution |
|
|
159 | (1) |
|
4.6.6 Fitting a Poisson distribution |
|
|
160 | (1) |
|
4.6.7 Times between events |
|
|
161 | (1) |
|
|
162 | (2) |
|
|
162 | (1) |
|
4.7.2 Summary of main results |
|
|
162 | (1) |
|
4.7.3 MATLAB and R commands |
|
|
163 | (1) |
|
|
164 | (11) |
|
5 Continuous probability distributions |
|
|
175 | (58) |
|
5.1 Continuous random variables |
|
|
175 | (6) |
|
5.1.1 Definition of a continuous random variable |
|
|
175 | (1) |
|
5.1.2 Definition of a continuous probability distribution |
|
|
176 | (1) |
|
5.1.3 Moments of a continuous probability distribution |
|
|
177 | (4) |
|
5.1.4 Median and mode of a continuous probability distribution |
|
|
181 | (1) |
|
5.1.5 Parameters of probability distributions |
|
|
181 | (1) |
|
|
181 | (3) |
|
5.2.1 Definition of a uniform distribution |
|
|
182 | (1) |
|
5.2.2 Applications of the uniform distribution |
|
|
183 | (1) |
|
5.2.3 Random deviates from a uniform distribution |
|
|
183 | (1) |
|
5.2.4 Distribution of F(X) is uniform |
|
|
183 | (1) |
|
5.2.5 Fitting a uniform distribution |
|
|
184 | (1) |
|
5.3 Exponential distribution |
|
|
184 | (10) |
|
5.3.1 Definition of an exponential distribution |
|
|
184 | (2) |
|
|
186 | (1) |
|
|
186 | (1) |
|
5.3.2.2 Lifetime distribution |
|
|
186 | (1) |
|
5.3.3 Applications of the exponential distribution |
|
|
187 | (2) |
|
5.3.4 Random deviates from an exponential distribution |
|
|
189 | (1) |
|
5.3.5 Fitting an exponential distribution |
|
|
190 | (4) |
|
5.4 Normal (Gaussian) distribution |
|
|
194 | (9) |
|
5.4.1 Definition of a normal distribution |
|
|
194 | (1) |
|
5.4.2 The standard normal distribution Z ~ N(0,1) |
|
|
195 | (4) |
|
5.4.3 Applications of the normal distribution |
|
|
199 | (4) |
|
5.4.4 Random numbers from a normal distribution |
|
|
203 | (1) |
|
5.4.5 Fitting a normal distribution |
|
|
203 | (1) |
|
|
203 | (2) |
|
5.5.1 Quantile-quantile plots |
|
|
204 | (1) |
|
|
204 | (1) |
|
5.6 Lognormal distribution |
|
|
205 | (4) |
|
5.6.1 Definition of a lognormal distribution |
|
|
205 | (3) |
|
5.6.2 Applications of the lognormal distribution |
|
|
208 | (1) |
|
5.6.3 Random numbers from lognormal distribution |
|
|
209 | (1) |
|
5.6.4 Fitting a lognormal distribution |
|
|
209 | (1) |
|
|
209 | (4) |
|
5.7.1 Definition of a gamma distribution |
|
|
210 | (2) |
|
5.7.2 Applications of the gamma distribution |
|
|
212 | (1) |
|
5.7.3 Random deviates from gamma distribution |
|
|
212 | (1) |
|
5.7.4 Fitting a gamma distribution |
|
|
212 | (1) |
|
|
213 | (5) |
|
5.8.1 Definition of a Gumbel distribution |
|
|
213 | (2) |
|
5.8.2 Applications of the Gumbel distribution |
|
|
215 | (1) |
|
5.8.3 Random deviates from a Gumbel distribution |
|
|
215 | (1) |
|
5.8.4 Fitting a Gumbel distribution |
|
|
216 | (2) |
|
|
218 | (2) |
|
|
218 | (1) |
|
5.9.2 Summary of main results |
|
|
218 | (1) |
|
5.9.3 MATLAB and R commands |
|
|
219 | (1) |
|
|
220 | (13) |
|
6 Correlation and functions of random variables |
|
|
233 | (46) |
|
|
233 | (3) |
|
6.2 Sample covariance and correlation coefficient |
|
|
236 | (8) |
|
6.2.1 Defining sample covariance |
|
|
236 | (8) |
|
6.3 Bivariate distributions, population covariance and correlation coefficient |
|
|
244 | (12) |
|
6.3.1 Population covariance and correlation coefficient |
|
|
245 | (1) |
|
6.3.2 Bivariate distributions -- Discrete case |
|
|
246 | (2) |
|
6.3.3 Bivariate distributions -- Continuous case |
|
|
248 | (1) |
|
6.3.3.1 Marginal distributions |
|
|
248 | (1) |
|
6.3.3.2 Bivariate histogram |
|
|
249 | (1) |
|
6.3.3.3 Covariate and correlation |
|
|
250 | (1) |
|
6.3.3.4 Bivariate probability distributions |
|
|
251 | (5) |
|
|
256 | (1) |
|
6.4 Linear combination of random variables (propagation of error) |
|
|
256 | (9) |
|
6.4.1 Mean and variance of a linear combination of random variables |
|
|
257 | (2) |
|
6.4.1.1 Bounds for correlation coefficient |
|
|
259 | (1) |
|
6.4.2 Linear combination of normal random variables |
|
|
260 | (2) |
|
6.4.3 Central Limit Theorem and distribution of the sample mean |
|
|
262 | (3) |
|
6.5 Non-linear functions of random variables (propagation of error) |
|
|
265 | (2) |
|
|
267 | (1) |
|
|
267 | (1) |
|
6.6.2 Summary of main results |
|
|
267 | (1) |
|
6.6.3 MATLAB and R commands |
|
|
268 | (1) |
|
|
268 | (11) |
|
7 Estimation and inference |
|
|
279 | (78) |
|
|
279 | (1) |
|
7.2 Statistics as estimators |
|
|
279 | (6) |
|
7.2.1 Population parameters |
|
|
280 | (1) |
|
7.2.2 Sample statistics and sampling distributions |
|
|
280 | (2) |
|
|
282 | (3) |
|
7.3 Accuracy and precision |
|
|
285 | (1) |
|
7.4 Precision of estimate of population mean |
|
|
285 | (14) |
|
7.4.1 Confidence interval for population mean when a known |
|
|
285 | (3) |
|
7.4.2 Confidence interval for mean when a unknown |
|
|
288 | (1) |
|
7.4.2.1 Construction of confidence interval and rationale for the t-distribution |
|
|
288 | (1) |
|
7.4.2.2 The t-distribution |
|
|
289 | (2) |
|
|
291 | (1) |
|
|
292 | (1) |
|
7.4.4.1 Bootstrap resampling |
|
|
292 | (1) |
|
7.4.4.2 Basic bootstrap confidence intervals |
|
|
293 | (1) |
|
7.4.4.3 Percentile bootstrap confidence intervals |
|
|
293 | (3) |
|
7.4.5 Parametric bootstrap |
|
|
296 | (3) |
|
|
299 | (6) |
|
7.5.1 Hypothesis test for population mean when a known |
|
|
300 | (2) |
|
7.5.2 Hypothesis test for population mean when a unknown |
|
|
302 | (1) |
|
7.5.3 Relation between a hypothesis test and the confidence interval |
|
|
303 | (1) |
|
|
304 | (1) |
|
7.5.5 One-sided confidence intervals and one-sided tests |
|
|
304 | (1) |
|
|
305 | (2) |
|
7.7 Confidence interval for a population variance and standard deviation |
|
|
307 | (2) |
|
|
309 | (8) |
|
7.8.1 Independent samples |
|
|
309 | (1) |
|
7.8.1.1 Population standard deviations differ |
|
|
309 | (3) |
|
7.8.1.2 Population standard deviations assumed equal |
|
|
312 | (3) |
|
|
315 | (2) |
|
|
317 | (1) |
|
7.10 Inference about proportions |
|
|
318 | (7) |
|
|
318 | (2) |
|
7.10.2 Comparing two proportions |
|
|
320 | (3) |
|
|
323 | (2) |
|
7.11 Prediction intervals and statistical tolerance intervals |
|
|
325 | (2) |
|
7.11.1 Prediction interval |
|
|
325 | (1) |
|
7.11.2 Statistical tolerance interval |
|
|
326 | (1) |
|
7.12 Goodness of fit tests |
|
|
327 | (5) |
|
|
328 | (2) |
|
7.12.2 Empirical distribution function tests |
|
|
330 | (2) |
|
|
332 | (3) |
|
|
332 | (1) |
|
7.13.2 Summary of main results |
|
|
333 | (2) |
|
7.13.3 MATLAB and R commands |
|
|
335 | (1) |
|
|
335 | (22) |
|
8 Linear regression and linear relationships |
|
|
357 | (46) |
|
|
357 | (19) |
|
|
357 | (2) |
|
|
359 | (2) |
|
|
361 | (1) |
|
8.1.3.1 Fitting the regression line |
|
|
361 | (2) |
|
8.1.3.2 Identical forms for the least squares estimate of the slope |
|
|
363 | (1) |
|
8.1.3.3 Relation to correlation |
|
|
363 | (1) |
|
8.1.3.4 Alternative form for the fitted regression line |
|
|
364 | (1) |
|
|
365 | (1) |
|
8.1.3.6 Identities satisfied by the residuals |
|
|
366 | (1) |
|
8.1.3.7 Estimating the standard deviation of the errors |
|
|
367 | (1) |
|
8.1.3.8 Checking assumptions A3, A4 and A5 |
|
|
368 | (1) |
|
8.1.4 Properties of the estimators |
|
|
368 | (1) |
|
8.1.4.1 Estimator of the slope |
|
|
369 | (2) |
|
8.1.4.2 Estimator of the intercept |
|
|
371 | (1) |
|
|
371 | (1) |
|
8.1.5.1 Confidence interval for mean value of Y given x |
|
|
371 | (2) |
|
8.1.5.2 Limits of prediction |
|
|
373 | (1) |
|
8.1.5.3 Plotting confidence intervals and prediction limits |
|
|
374 | (1) |
|
8.1.6 Summarizing the algebra |
|
|
375 | (1) |
|
8.1.7 Coefficient of determination R2 |
|
|
376 | (1) |
|
8.2 Regression for a bivariate normal distribution |
|
|
376 | (2) |
|
8.2.1 The bivariate normal distribution |
|
|
377 | (1) |
|
8.3 Regression towards the mean |
|
|
378 | (2) |
|
8.4 Relationship between correlation and regression |
|
|
380 | (3) |
|
8.4.1 Values of x are assumed to be measured without error and can be preselected |
|
|
381 | (1) |
|
8.4.2 The data pairs are assumed to be a random sample from a bivariate normal distribution |
|
|
381 | (2) |
|
8.5 Fitting a linear relationship when both variables are measured with error |
|
|
383 | (3) |
|
|
386 | (3) |
|
8.7 Intrinsically linear models |
|
|
389 | (4) |
|
|
393 | (2) |
|
|
393 | (1) |
|
8.8.2 Summary of main results |
|
|
393 | (1) |
|
8.8.3 MATLAB and R commands |
|
|
394 | (1) |
|
|
395 | (8) |
|
|
403 | (88) |
|
|
403 | (1) |
|
|
404 | (1) |
|
9.3 Multiple regression model |
|
|
405 | (3) |
|
|
405 | (1) |
|
|
406 | (1) |
|
9.3.2.1 Linear transformations of a random vector |
|
|
406 | (1) |
|
9.3.2.2 Multivariate normal distribution |
|
|
407 | (1) |
|
9.3.3 Matrix formulation of the linear model |
|
|
407 | (1) |
|
9.3.4 Geometrical interpretation |
|
|
407 | (1) |
|
|
408 | (10) |
|
9.4.1 Principle of least squares |
|
|
408 | (1) |
|
9.4.2 Multivariate calculus -- Three basic results |
|
|
409 | (1) |
|
9.4.3 The least squares estimator of the coefficients |
|
|
410 | (1) |
|
9.4.4 Estimating the coefficients |
|
|
411 | (5) |
|
9.4.5 Estimating the standard deviation of the errors |
|
|
416 | (1) |
|
9.4.6 Standard errors of the estimators of the coefficients |
|
|
417 | (1) |
|
|
418 | (4) |
|
|
419 | (1) |
|
|
420 | (1) |
|
|
421 | (1) |
|
|
422 | (1) |
|
|
422 | (2) |
|
9.7 Building multiple regression models |
|
|
424 | (26) |
|
|
424 | (4) |
|
9.7.2 Categorical variables |
|
|
428 | (5) |
|
9.7.3 F-test for an added set of variables |
|
|
433 | (7) |
|
|
440 | (7) |
|
9.7.5 Guidelines for fitting regression models |
|
|
447 | (3) |
|
|
450 | (15) |
|
|
450 | (1) |
|
9.8.2 Aliasing and sampling intervals |
|
|
450 | (1) |
|
9.8.3 Fitting a trend and seasonal variation with regression |
|
|
451 | (5) |
|
9.8.4 Auto-covariance and auto-correlation |
|
|
456 | (1) |
|
9.8.4.1 Defining auto-covariance for a stationary times series model |
|
|
457 | (1) |
|
9.8.4.2 Defining sample auto-covariance and the correlogram |
|
|
458 | (1) |
|
9.8.5 Auto-regressive models |
|
|
459 | (1) |
|
9.8.5.1 AR(1) and AR(2) models |
|
|
460 | (5) |
|
9.9 Non-linear least squares |
|
|
465 | (3) |
|
9.10 Generalized linear model |
|
|
468 | (6) |
|
9.10.1 Logistic regression |
|
|
468 | (2) |
|
9.10.2 Poisson regression |
|
|
470 | (4) |
|
|
474 | (2) |
|
|
474 | (1) |
|
9.11.2 Summary of main results |
|
|
474 | (1) |
|
9.11.3 MATLAB and R commands |
|
|
475 | (1) |
|
|
476 | (15) |
|
10 Statistical quality control |
|
|
491 | (68) |
|
10.1 Continuous improvement |
|
|
491 | (5) |
|
|
491 | (1) |
|
10.1.2 Taking measurements |
|
|
492 | (1) |
|
|
493 | (1) |
|
10.1.4 Strategies for quality improvement |
|
|
494 | (1) |
|
10.1.5 Quality management systems |
|
|
494 | (1) |
|
10.1.6 Implementing continuous improvement |
|
|
495 | (1) |
|
|
496 | (14) |
|
|
496 | (3) |
|
10.2.2 Histograms and box plots |
|
|
499 | (2) |
|
10.2.3 Components of variance |
|
|
501 | (9) |
|
|
510 | (4) |
|
10.3.1 Process capability index |
|
|
510 | (1) |
|
10.3.2 Process performance index |
|
|
511 | (1) |
|
10.3.3 One-sided process capability indices |
|
|
512 | (2) |
|
|
514 | (16) |
|
|
514 | (1) |
|
10.4.1.1 Reliability of components |
|
|
514 | (1) |
|
10.4.1.2 Reliability function and the failure rate |
|
|
515 | (2) |
|
|
517 | (1) |
|
10.4.2.1 Definition of the Weibull distribution |
|
|
517 | (1) |
|
10.4.2.2 Weibull quantile plot |
|
|
518 | (4) |
|
|
522 | (2) |
|
10.4.3 Maximum likelihood |
|
|
524 | (5) |
|
10.4.4 Kaplan-Meier estimator of reliability |
|
|
529 | (1) |
|
|
530 | (3) |
|
10.6 Statistical quality control charts |
|
|
533 | (15) |
|
10.6.1 Shewhart mean and range chart for continuous variables |
|
|
533 | (1) |
|
|
533 | (2) |
|
|
535 | (3) |
|
10.6.2 P-charts for proportions |
|
|
538 | (1) |
|
10.6.3 C-charts for counts |
|
|
539 | (3) |
|
10.6.4 Cumulative sum charts |
|
|
542 | (2) |
|
10.6.5 Multivariate control charts |
|
|
544 | (4) |
|
|
548 | (2) |
|
|
548 | (1) |
|
10.7.2 Summary of main results |
|
|
548 | (2) |
|
10.7.3 MATLAB and R commands |
|
|
550 | (1) |
|
|
550 | (9) |
|
11 Design of experiments with regression analysis |
|
|
559 | (46) |
|
|
559 | (3) |
|
11.2 Factorial designs with factors at two levels |
|
|
562 | (18) |
|
11.2.1 Full factorial designs |
|
|
562 | (1) |
|
11.2.1.1 Setting up a 2fc design |
|
|
562 | (3) |
|
11.2.1.2 Analysis of 2fc design |
|
|
565 | (15) |
|
11.3 Fractional factorial designs |
|
|
580 | (5) |
|
11.4 Central composite designs |
|
|
585 | (8) |
|
11.5 Evolutionary operation (EVOP) |
|
|
593 | (4) |
|
|
597 | (1) |
|
|
597 | (1) |
|
11.6.2 Summary of main results |
|
|
597 | (1) |
|
11.6.3 MATLAB and R commands |
|
|
598 | (1) |
|
|
598 | (7) |
|
12 Design of experiments and analysis of variance |
|
|
605 | (44) |
|
|
605 | (1) |
|
12.2 Comparison of several means with one-way ANOVA |
|
|
605 | (8) |
|
12.2.1 Defining the model |
|
|
606 | (1) |
|
12.2.2 Limitation of multiple t-tests |
|
|
606 | (1) |
|
|
607 | (3) |
|
|
610 | (1) |
|
12.2.5 Follow up procedure |
|
|
610 | (3) |
|
12.3 Two factors at multiple levels |
|
|
613 | (8) |
|
12.3.1 Two factors without replication (two-way ANOVA) |
|
|
614 | (4) |
|
12.3.2 Two factors with replication (three-way ANOVA) |
|
|
618 | (3) |
|
12.4 Randomized block design |
|
|
621 | (5) |
|
|
626 | (10) |
|
|
636 | (2) |
|
|
636 | (1) |
|
12.6.2 Summary of main results |
|
|
637 | (1) |
|
12.6.3 MATLAB and R commands |
|
|
637 | (1) |
|
|
638 | (11) |
|
|
649 | (50) |
|
|
649 | (13) |
|
|
649 | (1) |
|
|
650 | (1) |
|
|
651 | (1) |
|
|
652 | (1) |
|
|
653 | (2) |
|
13.1.6 Paths and cut sets |
|
|
655 | (1) |
|
13.1.7 Reliability function |
|
|
656 | (2) |
|
|
658 | (1) |
|
13.1.9 Non-repairable systems |
|
|
658 | (1) |
|
|
659 | (2) |
|
13.1.11 Common cause failures |
|
|
661 | (1) |
|
13.1.12 Reliability bounds |
|
|
661 | (1) |
|
|
662 | (22) |
|
13.2.1 Discrete Markov chain |
|
|
663 | (4) |
|
13.2.2 Equilibrium behavior of irreducible Markov chains |
|
|
667 | (3) |
|
13.2.3 Methods for solving equilibrium equations |
|
|
670 | (5) |
|
13.2.4 Absorbing Markov chains |
|
|
675 | (6) |
|
13.2.5 Markov chains in continuous time |
|
|
681 | (3) |
|
13.3 Simulation of systems |
|
|
684 | (10) |
|
13.3.1 The simulation procedure |
|
|
685 | (4) |
|
13.3.2 Drawing inference from simulation outputs |
|
|
689 | (3) |
|
13.3.3 Variance reduction |
|
|
692 | (2) |
|
|
694 | (2) |
|
|
694 | (1) |
|
13.4.2 Summary of main results |
|
|
694 | (2) |
|
|
696 | (3) |
|
|
699 | (28) |
|
|
699 | (3) |
|
14.2 Simple random sampling from a finite population |
|
|
702 | (6) |
|
14.2.1 Finite population correction |
|
|
702 | (1) |
|
14.2.2 Randomization theory |
|
|
703 | (1) |
|
14.2.2.1 Defining the simple random sample |
|
|
703 | (1) |
|
14.2.2.2 Mean and variance of sample mean |
|
|
704 | (1) |
|
14.2.2.3 Mean and variance of estimator of population total |
|
|
705 | (2) |
|
14.2.3 Model based analysis |
|
|
707 | (1) |
|
|
708 | (1) |
|
|
708 | (5) |
|
14.3.1 Principle of stratified sampling |
|
|
709 | (1) |
|
14.3.2 Estimating the population mean and total |
|
|
709 | (2) |
|
14.3.3 Optimal allocation of the sample over strata |
|
|
711 | (2) |
|
14.4 Multi-stage sampling |
|
|
713 | (3) |
|
|
716 | (1) |
|
14.6 Ratio estimators and regression estimators |
|
|
716 | (2) |
|
|
716 | (1) |
|
14.6.2 Regression estimators |
|
|
716 | (1) |
|
|
716 | (2) |
|
14.7 Calibration of the unit cost data base |
|
|
718 | (3) |
|
14.7.1 Sources of error in an AMP |
|
|
718 | (1) |
|
14.7.2 Calibration factor |
|
|
719 | (2) |
|
|
721 | (1) |
|
|
721 | (1) |
|
14.8.2 Summary of main results |
|
|
721 | (1) |
|
|
722 | (5) |
|
|
727 | (4) |
|
|
727 | (1) |
|
|
727 | (1) |
|
|
728 | (1) |
|
A.4 Probability distributions |
|
|
729 | (2) |
|
|
731 | (14) |
|
Appendix C Getting started in R |
|
|
745 | (10) |
|
|
745 | (1) |
|
C.2 Using R as a calculator |
|
|
745 | (2) |
|
|
747 | (1) |
|
|
747 | (1) |
|
|
747 | (2) |
|
|
747 | (1) |
|
|
748 | (1) |
|
|
748 | (1) |
|
C.5.2.2 Several variables |
|
|
748 | (1) |
|
|
749 | (1) |
|
C.7 User defined functions |
|
|
750 | (1) |
|
|
750 | (1) |
|
C.9 Loops and conditionals |
|
|
751 | (1) |
|
|
752 | (1) |
|
|
753 | (1) |
|
C.12 Creating time series objects |
|
|
753 | (2) |
|
Appendix D Getting started in MATLAB |
|
|
755 | (10) |
|
|
755 | (1) |
|
D.2 Using MATLAB as a calculator |
|
|
755 | (1) |
|
|
756 | (1) |
|
D.4 MATLAB scripts (m-files) |
|
|
756 | (1) |
|
|
757 | (1) |
|
|
757 | (1) |
|
|
757 | (1) |
|
|
757 | (1) |
|
D.5.2.2 Several variables |
|
|
758 | (1) |
|
|
758 | (3) |
|
D.7 User defined functions |
|
|
761 | (1) |
|
|
761 | (1) |
|
D.9 Loops and conditionals |
|
|
761 | (2) |
|
|
763 | (1) |
|
D.11 Creating time series objects |
|
|
764 | (1) |
|
|
765 | (18) |
|
E.1 How good is your probability assessment? |
|
|
765 | (2) |
|
|
765 | (1) |
|
|
765 | (1) |
|
|
765 | (2) |
|
|
767 | (1) |
|
E.1.5 Follow up questions |
|
|
767 | (1) |
|
|
767 | (1) |
|
|
767 | (1) |
|
|
767 | (1) |
|
|
768 | (1) |
|
E.2.4 Computer simulation |
|
|
768 | (1) |
|
|
768 | (1) |
|
|
768 | (4) |
|
|
768 | (1) |
|
|
769 | (1) |
|
|
770 | (1) |
|
|
770 | (2) |
|
|
772 | (1) |
|
E.4 Use your braking brains |
|
|
772 | (1) |
|
|
772 | (1) |
|
|
772 | (1) |
|
|
772 | (1) |
|
E.5 Predicting descent time from payload |
|
|
773 | (1) |
|
|
773 | (1) |
|
|
773 | (1) |
|
|
774 | (1) |
|
|
774 | (1) |
|
E.6 Company efficiency, resources and teamwork |
|
|
774 | (2) |
|
|
774 | (1) |
|
|
774 | (2) |
|
|
776 | (1) |
|
E.7 Factorial experiment -- reaction times by distraction, dexterity and distinctness |
|
|
776 | (2) |
|
|
776 | (1) |
|
|
776 | (1) |
|
|
776 | (1) |
|
|
777 | (1) |
|
E.7.5 Follow up questions |
|
|
777 | (1) |
|
E.8 Weibull analysis of cycles to failure |
|
|
778 | (1) |
|
|
778 | (1) |
|
|
778 | (1) |
|
|
778 | (1) |
|
|
779 | (1) |
|
|
779 | (2) |
|
E.10 Where is the summit? |
|
|
781 | (2) |
References |
|
783 | (6) |
Index |
|
789 | |