|
1 Statistics And Health Data |
|
|
1 | (16) |
|
|
1 | (1) |
|
1.2 Statistics and Organic Statistics |
|
|
2 | (1) |
|
1.3 Statistical Methods and Models |
|
|
3 | (3) |
|
|
6 | (7) |
|
|
7 | (2) |
|
|
9 | (1) |
|
|
10 | (2) |
|
|
12 | (1) |
|
|
13 | (1) |
|
|
14 | (1) |
|
|
14 | (3) |
|
2 Key Statistical Concepts |
|
|
17 | (20) |
|
2.1 Samples and Populations |
|
|
17 | (1) |
|
|
18 | (7) |
|
|
18 | (1) |
|
2.2.2 Dependent and Independent Variables |
|
|
19 | (1) |
|
2.2.3 Statistical Distributions and Their Summaries |
|
|
19 | (2) |
|
2.2.4 Parameters and Models |
|
|
21 | (1) |
|
2.2.5 Estimation and Inference |
|
|
21 | (1) |
|
2.2.6 Variation and Standard Error |
|
|
22 | (1) |
|
2.2.7 Conditional and Marginal Means |
|
|
23 | (1) |
|
2.2.8 Joint and Mixture Distributions |
|
|
24 | (1) |
|
2.2.9 Variable Transformations |
|
|
24 | (1) |
|
2.3 Common Statistical Distributions and Concepts |
|
|
25 | (8) |
|
2.3.1 The Bernoulli and Binomial Distributions for Binary Outcomes |
|
|
25 | (2) |
|
2.3.2 The Multinomial Distribution for Categorical Outcomes |
|
|
27 | (1) |
|
2.3.3 The Poisson and Negative Binomial Distributions for Counts |
|
|
27 | (3) |
|
2.3.4 The Normal Distribution for Continuous Outcomes |
|
|
30 | (1) |
|
2.3.5 The Gamma and Lognormal Distributions for Right-Skewed Outcomes |
|
|
31 | (2) |
|
2.4 Hypothesis Testing and Statistical Inference |
|
|
33 | (3) |
|
|
36 | (1) |
|
|
36 | (1) |
|
|
37 | (28) |
|
|
37 | (1) |
|
3.2 Trends in Body Mass Index in the United States |
|
|
38 | (1) |
|
|
39 | (3) |
|
3.3.1 Regression to Quantify Association |
|
|
40 | (1) |
|
3.3.2 Regression to Explain Variability |
|
|
40 | (1) |
|
3.3.3 Regression to Estimate the Effect of an Intervention |
|
|
41 | (1) |
|
3.3.4 Regression to Predict Outcomes |
|
|
41 | (1) |
|
3.4 An Organic View of Regression |
|
|
42 | (3) |
|
3.5 The Linear Regression Equation and Its Assumptions |
|
|
45 | (1) |
|
3.6 Linear Regression Estimation and Interpretation |
|
|
46 | (7) |
|
3.6.1 Estimation of the Regression Coefficients |
|
|
46 | (2) |
|
3.6.2 Interpretation of the Regression Coefficients |
|
|
48 | (2) |
|
|
50 | (1) |
|
3.6.4 Moderation or Interaction |
|
|
51 | (2) |
|
3.7 Model Selection and Hypothesis Testing |
|
|
53 | (3) |
|
3.8 Checking Assumptions About the Random Part |
|
|
56 | (1) |
|
3.9 Do I Have a Good Model? Goodness of Fit and Model Adequacy |
|
|
57 | (2) |
|
|
59 | (1) |
|
3.11 Non-parametric Regression |
|
|
60 | (3) |
|
|
63 | (1) |
|
|
63 | (2) |
|
4 Binary And Categorical Outcomes |
|
|
65 | (28) |
|
|
65 | (1) |
|
|
66 | (3) |
|
|
67 | (2) |
|
4.3 Linear Regression with a Binary Outcome |
|
|
69 | (1) |
|
|
70 | (2) |
|
4.5 Interpretation of a Logistic Regression |
|
|
72 | (4) |
|
4.5.1 A Single Binary Covariate |
|
|
72 | (1) |
|
|
73 | (3) |
|
4.6 Interpretation on the Probability Scale |
|
|
76 | (4) |
|
4.6.1 Estimating Probabilities |
|
|
76 | (2) |
|
|
78 | (2) |
|
4.7 Model Building and Assessment |
|
|
80 | (6) |
|
4.7.1 Model Comparison: AIC and BIC |
|
|
80 | (1) |
|
4.7.2 Model Calibration: Hosmer-Lemeshow Test |
|
|
81 | (2) |
|
4.7.3 Model Prediction: ROC and AUC |
|
|
83 | (3) |
|
4.8 Multinomial Regression |
|
|
86 | (6) |
|
4.8.1 An Extension of Logistic Regression |
|
|
86 | (4) |
|
|
90 | (1) |
|
4.8.3 Ordered Multinomial Regression |
|
|
91 | (1) |
|
|
92 | (1) |
|
|
92 | (1) |
|
|
93 | (20) |
|
|
93 | (1) |
|
5.2 The Poisson Distribution |
|
|
94 | (1) |
|
5.3 Two Count Data Regression Models |
|
|
95 | (2) |
|
5.3.1 Modeling Health Care Utilization |
|
|
96 | (1) |
|
5.3.2 Modeling Mortality in a Cancer Registry |
|
|
96 | (1) |
|
5.4 Poisson Regression for Individual-Level Counts |
|
|
97 | (4) |
|
5.4.1 A Note on Multiplicative Versus Additive Effects |
|
|
99 | (1) |
|
5.4.2 Accounting for Exposure |
|
|
100 | (1) |
|
5.5 Poisson Regression for Population Counts |
|
|
101 | (3) |
|
5.6 Overdispersion, Negative Binomial, and Zero-Inflated Models |
|
|
104 | (6) |
|
5.6.1 Negative Binomial Regression |
|
|
105 | (3) |
|
5.6.2 Zero-Inflated Count Data Regression |
|
|
108 | (2) |
|
5.7 Generalized Linear Models |
|
|
110 | (1) |
|
|
111 | (1) |
|
|
112 | (1) |
|
|
113 | (20) |
|
6.1 Defining and Measuring Health Care Costs |
|
|
113 | (1) |
|
6.2 MEPS Data on Health Care Utilization and Costs |
|
|
114 | (2) |
|
6.3 Log Cost Models and the Lognormal Distribution |
|
|
116 | (5) |
|
6.4 Gamma Models for Right-Skewed Cost Outcomes |
|
|
121 | (3) |
|
6.5 Including the Zeros: The Two-Part Model |
|
|
124 | (4) |
|
|
128 | (2) |
|
|
130 | (1) |
|
|
130 | (3) |
|
|
133 | (16) |
|
7.1 Uncertainty and Inference in Statistical Models |
|
|
133 | (2) |
|
7.2 The Bootstrap for Variance Estimation |
|
|
135 | (6) |
|
7.3 Bootstrap Confidence Intervals |
|
|
141 | (2) |
|
|
143 | (3) |
|
|
146 | (1) |
|
|
147 | (1) |
|
|
147 | (2) |
|
|
149 | (24) |
|
|
149 | (2) |
|
|
151 | (1) |
|
|
152 | (4) |
|
|
153 | (1) |
|
|
154 | (1) |
|
|
155 | (1) |
|
8.4 Building a Causal Graph |
|
|
156 | (1) |
|
8.5 Estimating the Causal Effect |
|
|
157 | (8) |
|
|
159 | (3) |
|
|
162 | (1) |
|
|
163 | (2) |
|
|
165 | (2) |
|
|
167 | (3) |
|
|
170 | (1) |
|
|
171 | (1) |
|
|
171 | (2) |
|
|
173 | (18) |
|
|
173 | (1) |
|
9.2 Introduction to Health Surveys |
|
|
174 | (1) |
|
9.3 National Health Surveys |
|
|
175 | (1) |
|
9.4 Basic Elements of Survey Design |
|
|
176 | (2) |
|
|
178 | (3) |
|
9.5.1 Stratified Designs and Variance |
|
|
178 | (2) |
|
9.5.2 Stratification and Weighting |
|
|
180 | (1) |
|
|
181 | (2) |
|
9.7 Variance Estimation and Weighting in Complex Surveys |
|
|
183 | (2) |
|
9.8 Analyzing Survey Data: The Cost of Diabetes in the United States |
|
|
185 | (3) |
|
|
188 | (1) |
|
|
188 | (3) |
|
|
191 | (28) |
|
10.1 Explaining Versus Predicting |
|
|
191 | (3) |
|
10.2 Overfitting and the Bias-Variance Tradeoff |
|
|
194 | (2) |
|
10.3 Evaluating Predictive Performance |
|
|
196 | (2) |
|
|
198 | (2) |
|
10.5 Regularized Regression |
|
|
200 | (5) |
|
10.5.1 The Age-BMI Example |
|
|
200 | (2) |
|
10.5.2 Regularized Regression with Many Predictors: Hospitalization in MEPS |
|
|
202 | (3) |
|
|
205 | (7) |
|
10.6.1 The Age-BMI Example |
|
|
206 | (2) |
|
10.6.2 A Regression Tree with Many Predictors |
|
|
208 | (1) |
|
10.6.3 Classification Trees |
|
|
209 | (3) |
|
10.7 Ensemble Methods: Random Forests |
|
|
212 | (3) |
|
|
215 | (1) |
|
|
216 | (1) |
|
|
216 | (3) |
Index |
|
219 | |