Muutke küpsiste eelistusi

Steric Effects in the Chemisorption of Vibrationally Excited Methane on Nickel 2012 ed. [Kõva köide]

  • Formaat: Hardback, 175 pages, kõrgus x laius: 235x155 mm, kaal: 459 g, XIII, 175 p., 1 Hardback
  • Sari: Springer Theses
  • Ilmumisaeg: 05-Feb-2012
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642276784
  • ISBN-13: 9783642276781
  • Kõva köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 175 pages, kõrgus x laius: 235x155 mm, kaal: 459 g, XIII, 175 p., 1 Hardback
  • Sari: Springer Theses
  • Ilmumisaeg: 05-Feb-2012
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642276784
  • ISBN-13: 9783642276781
Bruce Yoder's thesis outlines his investigation of the dissociative chemisorption of methane (CH4) on a nickel single crystal. In this work Bruce uses a molecular beam and infrared laser techniques to prepare methane in excited rovibrational states. The excited methane molecules are aligned relative to the target nickel surface. Bruce describes the discovery and exploration of a previously unknown steric effect in the dissociation reaction between a vibrationally excited methane molecule and a nickel crystal. From these studies we see that methane molecules are up to twice as reactive when the vibration is aligned parallel rather than perpendicular to the surface. This discovery will help guide the development of detailed predictive models of methane chemisorption, which in turn may lead to better catalysts for the synthesis of several industrially relevant chemicals, including hydrogen fuel from natural gas.

This book describes the investigation of an unknown steric effect in the reaction between a vibrationally excited methane molecule colliding with the surface of the nickel crystal, a discovery which could lead to improvements in commercial hydrogen production.
1 Introduction 1(18)
1.1 Motivation
1(1)
1.2 Gas-Surface Interactions
2(3)
1.3 Gas-Surface Reaction Dynamics
5(4)
1.4 Steric Effects in Gas-Surface Reactions
9(2)
1.5 Inspiration From Gas-Phase Experiments
11(4)
1.6 Outline
15(1)
References
16(3)
2 Experimental Setup 19(32)
2.1 Overview of Experimental Setup
19(1)
2.2 Molecular Beam Source
19(2)
2.3 Surface Science UHV Chamber
21(7)
2.3.1 Overview
21(1)
2.3.2 Quadrupole Mass Spectrometer (QMS)
22(3)
2.3.3 Sample Preparation
25(1)
2.3.4 Auger Spectrometer
25(2)
2.3.5 LEED Spectrometer
27(1)
2.4 CW-IR State-Preparation Setup
28(5)
2.4.1 Overview
28(1)
2.4.2 Light Source
29(2)
2.4.3 Wavemeter
31(1)
2.4.4 Tunable λ/2 Wave Plate
32(1)
2.5 Frequency Stabilization
33(12)
2.5.1 Lamb Dip Detection and Characterization
36(4)
2.5.2 Lamb Dip Locking
40(5)
2.6 Pyroelectric Detection of Vibrationally Excited Molecules in a Molecular Beam
45(4)
References
49(2)
3 State Specific Preparation and Alignment of Gas-Phase Reagents 51(44)
3.1 Introduction
51(1)
3.2 Rovibrational Excitation of Molecular Beam
51(27)
3.2.1 Rapid Adiabatic Passage (RAP)
52(26)
3.3 Alignment of Vibrationally Excited Molecules in the Laboratory Frame
78(14)
3.3.1 Angular Momentum Alignment
79(7)
3.3.2 Vibrational Transition Dipole Moment Alignment
86(6)
References
92(3)
4 State-Resolved Steric Effects in Methane Chemisorption on Ni(100) 95(38)
4.1 Introduction
95(1)
4.2 CH4(v3 = 1) Reactivity and Alignment Effects on Ni(100)
95(20)
4.2.1 Independence of Excitation Efficiency Upon Polarization Rotation
98(1)
4.2.2 Polarization Dependence of Vibrationally Excited Methane Reactivity
99(4)
4.2.3 Effect of Hyperfine Depolarization on CH4(v3)-R(0) Reactivity
103(3)
4.2.4 Comparison of lair, and Calculated Alignment Coefficients for CH4(v3)
106(2)
4.2.5 Detailed Polarization Angle Dependence of the CH4(v3)-R(0) Reactivity
108(2)
4.2.6 Absolute Sticking Coefficients of CH4(v3)-R(0) on Ni(100)
110(5)
4.3 CD3H(vi = 1) Reactivity and Alignment Effects on Ni(100)
115(6)
4.3.1 Effect of Hyperfine Depolarization on CD3H(v1)-R(0)
117(1)
4.3.2 Comparison of Δp and Calculated Alignment Coefficients for CD3H(v1)
118(1)
4.3.3 Effect of Polarization Rotation with Respect to the Surface for CD3H(v1)-R(0)
119(2)
4.4 Discussion of Results
121(8)
References
129(4)
5 State-Resolved Steric Effects in CH4(v3) Dissociation on Ni(11O) 133(14)
5.1 Introduction
133(2)
5.2 CH4(v3) on Ni(110)-(Parallel vs. Normal)
135(5)
5.3 CH4(v3) on Ni(110)-(Perpendicular vs. Normal)
140(2)
5.4 Discussion of Results
142(4)
References
146(1)
6 Summary and Outlook 147(14)
6.1 Summary
147(4)
6.2 Experimental Improvements
151(7)
6.2.1 Modulation of Excitation Laser Polarization
151(2)
6.2.2 Free-Swinging UHV Pendulum for Molecular Beam Chopping
153(5)
6.3 Future Directions
158(1)
References
159(2)
Appendix A: Procedure for 'Locking' OPO Idler Frequency to Lamb Dip 161(6)
Appendix B: Beta Axis Calculation for R(0), R(1), P(1), Q(1) With and Without K-Resolution 167(6)
Appendix C: CD3H(v1) Rovibrational Transitions 173