Muutke küpsiste eelistusi

Stochastic Algorithms for Visual Tracking: Probabilistic Modelling and Stochastic Algorithms for Visual Localisation and Tracking Softcover reprint of the original 1st ed. 2002 [Pehme köide]

  • Formaat: Paperback / softback, 174 pages, kõrgus x laius: 235x155 mm, kaal: 296 g, IX, 174 p., 1 Paperback / softback
  • Sari: Distinguished Dissertations
  • Ilmumisaeg: 16-Sep-2011
  • Kirjastus: Springer London Ltd
  • ISBN-10: 1447111761
  • ISBN-13: 9781447111764
  • Pehme köide
  • Hind: 108,92 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 128,14 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 174 pages, kõrgus x laius: 235x155 mm, kaal: 296 g, IX, 174 p., 1 Paperback / softback
  • Sari: Distinguished Dissertations
  • Ilmumisaeg: 16-Sep-2011
  • Kirjastus: Springer London Ltd
  • ISBN-10: 1447111761
  • ISBN-13: 9781447111764
A central problem in computer vision is to track objects as they move and deform in a video sequence. Stochastic algorithms -- in particular, particle filters and the Condensation algorithm -- have dramatically enhanced the state of the art for such visual tracking problems in recent years. This book presents a unified framework for visual tracking using particle filters, including the new technique of partitioned sampling which can alleviate the "curse of dimensionality" suffered by standard particle filters. The book also introduces the notion of contour likelihood: a collection of models for assessing object shape, colour and motion, which are derived from the statistical properties of image features. Because of their statistical nature, contour likelihoods are ideal for use in stochastic algorithms. A unifying theme of the book is the use of statistics and probability, which enable the final output of the algorithms presented to be interpreted as the computer's "belief" about the state of the world. The book will be of use and interest to students, researchers and practitioners in computer vision, and assumes only an elementary knowledge of probability theory.

Muu info

Springer Book Archives
1 Introduction and background.- 1.1 Overview.- 1.2 Active contours for
visual tracking.- 2 The Condensation algorithm.- 2.1 The basic idea.- 2.2
Formal definitions.- 2.3 Operations on particle sets.- 2.4 The Condensation
theorem.- 2.5 The relation to factored sampling, or where did the proof
go?.- 2.6 Good particle sets and the effective sample size.- 2.7 A brief
history of Condensation.- 2.8 Some alternatives to Condensation.- 3 Contour
likelihoods.- 3.1 A generative model for image features.- 3.2 Background
models and the selection of measurement lines.- 3.3 A continuous analogue of
the contour likelihood ratio.- 4 Object localisation and tracking with
contour likelihoods.- 4.1 A brief survey of object localisation.- 4.2 Object
localisation by factored sampling.- 4.3 Estimating the number of targets.-
4.4 Learning the prior.- 4.5 Random sampling: some traps for the unwary.- 4.6
Tracker initialisation by factored sampling.- 4.7 Tracking using Condensation
and the contour likelihoods.- 5 Modelling occlusions using the Markov
likelihood.- 5.1 Detecting occluded objects.- 5.2 The problem with the
independence assumption.- 5.3 The Markov generative model.- 5.4 Prior for
occlusions.- 5.5 Realistic assessment of multiple targets.- 5.6 Improved
discrimination with a single target.- 5.7 Faster convergence using importance
sampling.- 5.8 Random samples using MelvIe.- 5.9 Calculating the partition
functions.- 5.10 Further remarks.- 6 A probabilistic exclusion principle for
multiple objects.- 6.1 Introduction.- 6.2 A generative model with an
exclusion principle.- 6.3 Tracking multiple wire-frame objects.- 6.4 Tracking
multiple opaque objects.- 7 Partitioned sampling.- 7.1 The need for
partitioned sampling.- 7.2 Weighted resampling.- 7.3 Basic partitioned
sampling.-7.4 Branched partitioned sampling.- 7.5 Performance of partitioned
sampling.- 7.6 Partitioned sampling for articulated objects.- 8 Conelusion?.-
Appendix A.- A.1 Measures and Metrics on the configuration space.- A.2 Proof
of the interior-exterior likelihood.- A.3 Del Morals resampling lemma and
its consequences.- Appendix B.- B.1 Summary Of Notation.