Muutke küpsiste eelistusi

Stochastic Decomposition: A Statistical Method for Large Scale Stochastic Linear Programming Softcover reprint of the original 1st ed. 1996 [Pehme köide]

  • Formaat: Paperback / softback, 222 pages, kõrgus x laius: 235x155 mm, kaal: 385 g, XXIV, 222 p., 1 Paperback / softback
  • Sari: Nonconvex Optimization and Its Applications 8
  • Ilmumisaeg: 22-Nov-2013
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 1461368456
  • ISBN-13: 9781461368458
Teised raamatud teemal:
  • Pehme köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 222 pages, kõrgus x laius: 235x155 mm, kaal: 385 g, XXIV, 222 p., 1 Paperback / softback
  • Sari: Nonconvex Optimization and Its Applications 8
  • Ilmumisaeg: 22-Nov-2013
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 1461368456
  • ISBN-13: 9781461368458
Teised raamatud teemal:
Motivation Stochastic Linear Programming with recourse represents one of the more widely applicable models for incorporating uncertainty within in which the SLP optimization models. There are several arenas model is appropriate, and such models have found applications in air­ line yield management, capacity planning, electric power generation planning, financial planning, logistics, telecommunications network planning, and many more. In some of these applications, modelers represent uncertainty in terms of only a few seenarios and formulate a large scale linear program which is then solved using LP software. However, there are many applications, such as the telecommunications planning problem discussed in this book, where a handful of seenarios do not capture variability well enough to provide a reasonable model of the actual decision-making problem. Problems of this type easily exceed the capabilities of LP software by several orders of magnitude. Their solution requires the use of algorithmic methods that exploit the structure of the SLP model in a manner that will accommodate large scale applications.

Arvustused

`... can be highly recommended to anyone who wants to understand what stochastic decomposition is all about ...' Mathematical Reviews, 98d

Muu info

Springer Book Archives
Preface.
1. Two Stage Stochastic Linear Programs.
2. Sampling Within Stochastic Linear Programming.
3. Foundations of Stochastic Decomposition.
4. Stabilizing Stochastic Decomposition.
5. Stopping Rules for Stochastic Decomposition.
6. Guidelines for Computer Implementation.
7. Illustrative Computational Experiments. Glossary.