Author |
|
ix | |
Acknowledgments |
|
xi | |
Preface to the third edition |
|
xiii | |
Preface to the second edition |
|
xv | |
Preface to the first edition |
|
xvii | |
|
|
1 | (50) |
|
1 Introduction to biological modelling |
|
|
3 | (20) |
|
|
3 | (1) |
|
|
4 | (1) |
|
1.3 Why is stochastic modelling necessary? |
|
|
4 | (4) |
|
|
8 | (2) |
|
1.5 Modelling genetic and biochemical networks |
|
|
10 | (8) |
|
1.6 Modelling higher-level systems |
|
|
18 | (2) |
|
|
20 | (1) |
|
|
20 | (3) |
|
2 Representation of biochemical networks |
|
|
23 | (28) |
|
2.1 Coupled chemical reactions |
|
|
23 | (1) |
|
2.2 Graphical representations |
|
|
24 | (2) |
|
|
26 | (10) |
|
2.4 Stochastic process algebras |
|
|
36 | (2) |
|
2.5 Systems Biology Markup Language (SBML) |
|
|
38 | (5) |
|
|
43 | (6) |
|
|
49 | (1) |
|
|
50 | (1) |
|
II Stochastic processes and simulation |
|
|
51 | (120) |
|
|
53 | (48) |
|
|
53 | (11) |
|
3.2 Discrete probability models |
|
|
64 | (8) |
|
3.3 The discrete uniform distribution |
|
|
72 | (1) |
|
3.4 The binomial distribution |
|
|
73 | (1) |
|
3.5 The geometric distribution |
|
|
73 | (3) |
|
3.6 The Poisson distribution |
|
|
76 | (3) |
|
3.7 Continuous probability models |
|
|
79 | (5) |
|
3.8 The uniform distribution |
|
|
84 | (3) |
|
3.9 The exponential distribution |
|
|
87 | (4) |
|
3.10 The normal/Gaussian distribution |
|
|
91 | (4) |
|
3.11 The gamma distribution |
|
|
95 | (3) |
|
|
98 | (1) |
|
|
99 | (1) |
|
|
100 | (1) |
|
|
101 | (24) |
|
|
101 | (1) |
|
4.2 Monte Carlo integration |
|
|
101 | (1) |
|
4.3 Uniform random number generation |
|
|
102 | (1) |
|
4.4 Transformation methods |
|
|
103 | (5) |
|
|
108 | (1) |
|
|
109 | (3) |
|
4.7 Importance resampling |
|
|
112 | (1) |
|
|
113 | (1) |
|
4.9 Using the statistical programming language R |
|
|
114 | (6) |
|
4.10 Analysis of simulation output |
|
|
120 | (2) |
|
|
122 | (2) |
|
|
124 | (1) |
|
|
125 | (46) |
|
|
125 | (1) |
|
5.2 Finite discrete time Markov chains |
|
|
125 | (7) |
|
5.3 Markov chains with continuous state-space |
|
|
132 | (7) |
|
5.4 Markov chains in continuous time |
|
|
139 | (15) |
|
|
154 | (14) |
|
|
168 | (2) |
|
|
170 | (1) |
|
III Stochastic chemical kinetics |
|
|
171 | (100) |
|
6 Chemical and biochemical kinetics |
|
|
173 | (32) |
|
6.1 Classical continuous deterministic chemical kinetics |
|
|
173 | (7) |
|
6.2 Molecular approach to kinetics |
|
|
180 | (2) |
|
6.3 Mass-action stochastic kinetics |
|
|
182 | (2) |
|
6.4 The Gillespie algorithm |
|
|
184 | (1) |
|
6.5 Stochastic Petri nets (SPNs) |
|
|
185 | (3) |
|
6.6 Structuring stochastic simulation codes |
|
|
188 | (3) |
|
6.7 Rate constant conversion |
|
|
191 | (5) |
|
6.8 Kolmogorov's equations and other analytic representations |
|
|
196 | (5) |
|
6.9 Software for simulating stochastic kinetic networks |
|
|
201 | (1) |
|
|
202 | (1) |
|
|
203 | (2) |
|
|
205 | (18) |
|
|
205 | (1) |
|
7.2 Dimerisation kinetics |
|
|
205 | (5) |
|
7.3 Michaelis-Menten enzyme kinetics |
|
|
210 | (4) |
|
7.4 An auto-regulatory genetic network |
|
|
214 | (5) |
|
|
219 | (2) |
|
|
221 | (1) |
|
|
222 | (1) |
|
8 Beyond the Gillespie algorithm |
|
|
223 | (26) |
|
|
223 | (1) |
|
8.2 Exact simulation methods |
|
|
223 | (5) |
|
8.3 Approximate simulation strategies |
|
|
228 | (13) |
|
8.4 Hybrid simulation strategies |
|
|
241 | (6) |
|
|
247 | (1) |
|
|
247 | (2) |
|
9 Spatially extended systems |
|
|
249 | (22) |
|
|
249 | (1) |
|
9.2 One-dimensional reaction-diffusion systems |
|
|
250 | (8) |
|
9.3 Two-dimensional reaction-diffusion systems |
|
|
258 | (1) |
|
|
259 | (1) |
|
|
260 | (11) |
|
|
271 | (84) |
|
10 Bayesian inference and MCMC |
|
|
273 | (30) |
|
10.1 Likelihood and Bayesian inference |
|
|
273 | (5) |
|
|
278 | (10) |
|
10.3 The Metropolis-Hastings algorithm |
|
|
288 | (4) |
|
|
292 | (1) |
|
10.5 Metropolis-Hastings algorithms for Bayesian inference |
|
|
293 | (1) |
|
10.6 Bayesian inference for latent variable models |
|
|
294 | (5) |
|
10.7 Alternatives to MCMC |
|
|
299 | (2) |
|
|
301 | (1) |
|
|
302 | (1) |
|
11 Inference for stochastic kinetic models |
|
|
303 | (48) |
|
|
303 | (1) |
|
11.2 Inference given complete data |
|
|
304 | (3) |
|
11.3 Discrete-time observations of the system state |
|
|
307 | (7) |
|
11.4 Diffusion approximations for inference |
|
|
314 | (4) |
|
11.5 Likelihood-free methods |
|
|
318 | (17) |
|
11.6 Approximate Bayesian computation (ABC) for parameter inference |
|
|
335 | (9) |
|
11.7 Network inference and model comparison |
|
|
344 | (3) |
|
|
347 | (2) |
|
|
349 | (2) |
|
|
351 | (4) |
|
|
355 | (8) |
|
A.1 Auto-regulatory network |
|
|
355 | (3) |
|
A.2 Lotka-Volterra reaction system |
|
|
358 | (1) |
|
A.3 Dimerisation-kinetics model |
|
|
359 | (4) |
|
Apppendix B Software associated with this book |
|
|
363 | (4) |
|
|
363 | (1) |
|
|
364 | (1) |
|
|
364 | (1) |
|
|
365 | (2) |
Bibliography |
|
367 | (12) |
Index |
|
379 | |