Muutke küpsiste eelistusi

Stochastic Tools in Mathematics and Science [Pehme köide]

(University of California, USA),
  • Formaat: Paperback / softback, 155 pages, kõrgus x laius x paksus: 235x155x8 mm, kaal: 231 g, 4 black & white line drawings
  • Sari: Surveys and Tutorials in the Applied Mathematical Sciences v. 1
  • Ilmumisaeg: 01-Jan-2006
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 0387280804
  • ISBN-13: 9780387280806
Teised raamatud teemal:
  • Pehme köide
  • Hind: 47,79 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 155 pages, kõrgus x laius x paksus: 235x155x8 mm, kaal: 231 g, 4 black & white line drawings
  • Sari: Surveys and Tutorials in the Applied Mathematical Sciences v. 1
  • Ilmumisaeg: 01-Jan-2006
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 0387280804
  • ISBN-13: 9780387280806
Teised raamatud teemal:
"Stochastic Tools in Mathematics and Science" is an introductory book on probability-based modeling. It covers basic stochastic tools used in physics, chemistry, engineering and the life sciences. The topics covered include conditional expectations, stochastic processes, Brownian motion and its relation to partial differential equations, Langevin equations, the Liouville and Fokker-Planck equations, as well as Markov chain Monte Carlo algorithms, renormalization and dimensional reduction, and basic equilibrium and non-equilibrium statistical mechanics. The applications include data assimilation, prediction from partial data, spectral analysis, and turbulence. A noteworthy feature of the book is the systematic analysis of memory effects. The presentation is mathematically attractive, and should form a useful bridge between the theoretical treatments familiar to mathematical specialists and the more practical questions raised by specific applications. The book is based on lecture notes from a class that has attracted graduate and advanced undergraduate students from mathematics and from many other science departments at the University of California, Berkeley. Each chapter is followed by exercises. The book will be useful for scientists and engineers working in a wide range of fields and applications.
Preface v
Preliminaries
1(16)
Least Squares Approximation
1(6)
Orthonormal Bases
7(2)
Fourier Series
9(3)
Fourier Transform
12(4)
Exercises
16(1)
Bibliography
16(1)
Probability
17(26)
Definitions
17(3)
Expected Values and Moments
20(6)
Monte Carlo Methods
26(3)
Parametric Estimation
29(2)
The Central Limit Theorem
31(3)
Conditional Probability and Conditional Expectation
34(4)
Bayes' Theorem
38(2)
Exercises
40(2)
Bibliography
42(1)
Brownian Motion
43(28)
Definition of Brownian Motion
43(2)
Brownian Motion and the Heat Equation
45(2)
Solution of the Heat Equation by Random Walks
47(3)
The Wiener Measure
50(2)
Heat Equation with Potential
52(3)
Physicists' Notation for Wiener Measure
55(2)
Another Connection Between Brownian Motion and the Heat Equation
57(2)
First Discussion of the Langevin Equation
59(5)
Solution of a Nonlinear Differential Equation by Branching Brownian Motion
64(1)
A Brief Introduction to Stochastic ODEs
65(2)
Exercises
67(2)
Bibliography
69(2)
Stationary Stochastic Processes
71(26)
Weak Definition of a Stochastic Process
71(3)
Covariance and Spectrum
74(2)
The Inertial Spectrum of Turbulence
76(2)
Random Measures and Random Fourier Transforms
78(6)
Prediction for Stationary Stochastic Processes
84(5)
Data Assimilation
89(3)
Exercises
92(3)
Bibliography
95(2)
Statistical Mechanics
97(22)
Mechanics
97(2)
Statistical Mechanics
99(3)
Entropy and Equilibrium
102(3)
The Ising Model
105(2)
Markov Chain Monte Carlo
107(4)
Renormalization
111(5)
Exercises
116(1)
Bibliography
117(2)
Time-Dependent Statistical Mechanics
119(26)
More on the Langevin Equation
119(3)
A Coupled System of Harmonic Oscillators
122(2)
Mathematical Addenda
124(5)
The Mori-Zwanzig Formalism
129(5)
More on Fluctuation-Dissipation Theorems
134(1)
Scale Separation and Weak Coupling
135(2)
Noninstantaneous Memory
137(4)
Exercises
141(1)
Bibliography
142(3)
Index 145