Muutke küpsiste eelistusi

Student Solutions Manual for Nonlinear Dynamics and Chaos, 2nd edition [Pehme köide]

  • Formaat: Paperback / softback, 404 pages, kõrgus x laius x paksus: 278x216x22 mm, kaal: 950 g
  • Ilmumisaeg: 02-Aug-2016
  • Kirjastus: Westview Press Inc
  • ISBN-10: 0813350549
  • ISBN-13: 9780813350547
  • Pehme köide
  • Hind: 16,44 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 22,29 €
  • Säästad 26%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 404 pages, kõrgus x laius x paksus: 278x216x22 mm, kaal: 950 g
  • Ilmumisaeg: 02-Aug-2016
  • Kirjastus: Westview Press Inc
  • ISBN-10: 0813350549
  • ISBN-13: 9780813350547
This official Student Solutions Manual includes solutions to the odd-numbered exercises featured in the second edition of Steven Strogatz's classic text Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. The textbook and accompanying Student Solutions Manual are aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. Complete with graphs and worked-out solutions, this manual demonstrates techniques for students to analyze differential equations, bifurcations, chaos, fractals, and other subjects Strogatz explores in his popular book.
2 Flows on the Line
1(18)
2.1 A Geometric Way of Thinking
1(1)
2.2 Fixed Points and Stability
2(5)
2.3 Population Growth
7(2)
2.4 Linear Stability Analysis
9(2)
2.5 Existence and Uniqueness
11(2)
2.6 Impossibility of Oscillations
13(1)
2.7 Potentials
13(1)
2.8 Solving Equations on the Computer
14(5)
3 Bifurcations
19(46)
3.1 Saddle-Node Bifurcation
19(8)
3.2 Transcritical Bifurcation
27(4)
3.3 Laser Threshold
31(2)
3.4 Pitchfork Bifurcation
33(10)
3.5 Overdamped Bead on a Rotating Hoop
43(2)
3.6 Imperfect Bifurcations and Catastrophes
45(10)
3.7 Insect Outbreak
55(10)
4 Flows on the Circle
65(22)
4.1 Examples and Definitions
65(1)
4.2 Uniform Oscillator
66(1)
4.3 Nonuniform Oscillator
67(8)
4.4 Overdamped Pendulum
75(2)
4.5 Fireflies
77(3)
4.6 Superconducting Josephson Junctions
80(7)
5 Linear Systems
87(16)
5.1 Definitions and Examples
87(5)
5.2 Classification of Linear Systems
92(9)
5.3 Love Affairs
101(2)
6 Phase Plane
103(70)
6.1 Phase Portraits
103(6)
6.2 Existence, Uniqueness, and Topological Consequences
109(1)
6.3 Fixed Points and Linearization
110(7)
6.4 Rabbits versus Sheep
117(12)
6.5 Conservative Systems
129(16)
6.6 Reversible Systems
145(15)
6.7 Pendulum
160(4)
6.8 Index Theory
164(9)
7 Limit Cycles
173(46)
7.1 Examples
173(6)
7.2 Ruling Out Closed Orbits
179(9)
7.3 Poincare-Bendixson Theorem
188(9)
7.4 Lienard Systems
197(1)
7.5 Relaxation Oscillations
198(5)
7.6 Weakly Nonlinear Oscillators
203(16)
8 Bifurcations Revisited
219(54)
8.1 Saddle-Node, Transcritical, and Pitchfork Bifurcations
219(7)
8.2 Hopf Bifurcations
226(11)
8.3 Oscillating Chemical Reactions
237(4)
8.4 Global Bifurcations of Cycles
241(7)
8.5 Hysteresis in the Driven Pendulum and Josephson Junction
248(5)
8.6 Coupled Oscillators and Quasiperiodicity
253(14)
8.7 Poincare Maps
267(6)
9 Lorenz Equations
273(34)
9.1 A Chaotic Waterwheel
273(3)
9.2 Simple Properties of the Lorenz Equations
276(3)
9.3 Chaos on a Strange Attractor
279(13)
9.4 Lorenz Map
292(1)
9.5 Exploring Parameter Space
292(11)
9.6 Using Chaos to Send Secret Messages
303(4)
10 One-Dimensional Maps
307(52)
10.1 Fixed Points and Cobwebs
307(11)
10.2 Logistic Map: Numerics
318(5)
10.3 Logistic Map: Analysis
323(8)
10.4 Periodic Windows
331(8)
10.5 Liapunov Exponent
339(3)
10.6 Universality and Experiments
342(10)
10.7 Renormalization
352(7)
11 Fractals
359(12)
11.1 Countable and Uncountable Sets
359(1)
11.2 Cantor Set
360(2)
11.3 Dimension of Self-Similar Fractals
362(4)
11.4 Box Dimension
366(3)
11.5 Pointwise and Correlation Dimensions
369(2)
12 Strange Attractors
371
12.1 The Simplest Examples
371(10)
12.2 Henon Map
381(6)
12.3 Rossler System
387(2)
12.4 Chemical Chaos and Attractor Reconstruction
389(2)
12.5 Forced Double-Well Oscillator
391
Mitchal Dichter is an instructor of math at Campus Learning Assistance Services at the University of California, Santa Barbara.