Muutke küpsiste eelistusi

Surface and Underground Excavations: Methods, Techniques and Equipment 2nd edition [Kõva köide]

(Consultant Need-Based Solutions, Jodhpur, India)
  • Formaat: Hardback, 904 pages, kõrgus x laius: 254x178 mm, kaal: 1830 g
  • Ilmumisaeg: 13-May-2013
  • Kirjastus: CRC Press
  • ISBN-10: 0415621194
  • ISBN-13: 9780415621199
Teised raamatud teemal:
  • Kõva köide
  • Hind: 130,20 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 184,80 €
  • Säästad 30%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Raamatukogudele
  • Formaat: Hardback, 904 pages, kõrgus x laius: 254x178 mm, kaal: 1830 g
  • Ilmumisaeg: 13-May-2013
  • Kirjastus: CRC Press
  • ISBN-10: 0415621194
  • ISBN-13: 9780415621199
Teised raamatud teemal:
Surface and Underground Excavations Methods, Techniques and Equipment (2nd edition) covers the latest technologies and developments in the excavation arena at any locale: surface or underground. In the first few chapters, unit operations are discussed and subsequently, excavation techniques are described for various operations: tunnelling, drifting, raising, sinking, stoping, quarrying, surface mining, liquidation and mass blasting as well as construction of large subsurface excavations such as caverns and underground chambers. The design, planning and development of excavations are treated in a separate chapter. Especially featured are methodologies to select stoping methods through incremental analysis.

Furthermore, this edition encompasses comprehensive sections on mining at ultra depths, mining difficult deposits using non-conventional technologies, mineral inventory evaluation (ore reserves estimation) and mine closure. Concerns over Occupational Health and Safety (OHS), environment and loss prevention, and sustainable development are also addressed in advocating a solution to succeed within a scenario of global competition and recession.

This expanded second edition has been wholly revised, brought fully up-to-date and includes (wherever feasible) the latest trends and best practices, case studies, global surveys and toolkits as well as questions at the end of each chapter. This volume will now be even more appealing to students in earth sciences, geology, and in civil, mining and construction engineering, to practicing engineers and professionals in these disciplines as well as to all with a general or professional interest in surface and underground excavations.
Acknowledgements xxix
Preface xxxi
Conversion table xxxv
1 Introduction
1(24)
1.1 Excavations and their classification
1(1)
1.2 Surface excavations
2(1)
1.3 Underground excavations
2(1)
1.4 Importance of minerals and brief history of their recovery
3(3)
1.5 Current status of mineral industry
6(1)
1.6 Excavation technologies/systems - development & growth
6(8)
1.7 Unique features of mineral industry
14(2)
1.7.1 Different phases of mine life
16(1)
1.8 Brief history of civil work excavations including tunneling
16(2)
1.9 The current scenario
18(2)
1.9.1 Population growth
18(1)
1.9.2 Lifestyle
19(1)
1.9.3 Globalization
19(1)
1.9.4 Buyer's market
19(1)
1.9.5 Technological developments and renovations
20(1)
1.9.6 Information technology (IT) and its impacts
20(1)
1.10 Tomorrow's mine & civil excavations
20(2)
1.11 The way forward
22(3)
Questions
22(1)
References
23(2)
2 Rocks, minerals and mineral inventory evaluation
25(46)
2.1 Formation process and classification
25(4)
2.1.1 Igneous rocks
27(1)
2.1.2 Sedimentary rocks
27(1)
2.1.3 Metamorphic rocks
28(1)
2.2 Rock cycle & type of deposits
29(1)
2.3 Texture, grain size and shape
29(3)
2.3.1 Grain sizes and shapes
31(1)
2.3.2 Durability, plasticity and swelling potential of rocks
31(1)
2.4 The concepts of mineral resources and reserves; mineral inventory, cutoff grade and ores
32(1)
2.4.1 Some important ores - chemical & mineralogical composition
32(1)
2.5 Geological structures
32(5)
2.5.1 Geometry of a deposit
32(2)
2.5.2 Forms of deposits
34(1)
2.5.3 Structural features of rock mass
34(3)
2.6 Physical and mechanical characteristics of ores and rocks
37(4)
2.6.1 Rocks as rock mechanics
37(1)
2.6.2 Rock composition
38(2)
2.6.3 Rock strength
40(1)
2.7 Some other properties/characteristics
41(2)
2.7.1 Hardness of minerals
41(1)
2.7.2 Rock breakability
42(1)
2.8 Related terms - rock and mineral deposits
43(2)
2.9 Mineral inventory evaluation
45(17)
2.9.1 Introduction
45(1)
2.9.2 Grade computation from borehole data
46(1)
2.9.3 Mineral inventory modelling/estimation techniques
46(1)
2.9.3.1 Method of polygons
47(1)
2.9.3.2 Triangle or triangular prism method
48(1)
2.9.3.3 Cross-sectional method
49(1)
2.9.3.4 Inverse Square Distance Weighting (IDW) method
50(1)
2.9.3.5 Classical statistics
50(1)
2.9.3.6 Geostatistics
50(1)
2.9.3.7 Non-linear estimation techniques in geostatistics
51(2)
2.9.4 Important considerations for evaluation of the mineral inventory
53(1)
2.9.4.1 Homogeneity and mode of origin
53(1)
2.9.4.2 Geological and mineralogical boundaries
53(2)
2.9.5 Computation of the mineral inventory
55(1)
2.9.5.1 Logical steps followed
55(1)
2.9.5.2 Graphical presentation of data
55(1)
2.9.5.3 Statistical analysis and cumulative probability distribution
56(1)
2.9.5.4 Structural analysis - the semi-variogram
56(1)
2.9.5.5 Trend surface analysis
57(1)
2.9.5.6 Checking the variogram model
57(1)
2.9.5.7 Block kriging
57(1)
2.9.5.8 Block dimensions
57(1)
2.9.5.9 Kriging procedure
58(1)
2.9.6 Graphical presentation of the kriged results
58(2)
2.9.7 Grade-tonnage calculation and plotting the curves
60(1)
2.9.8 Selection of a suitable mining/stoping method
61(1)
2.10 Resources classification by UNECE
62(4)
2.11 The way forward
66(5)
Questions
66(3)
References
69(2)
3 Prospecting, exploration & site investigations
71(26)
3.1 Introduction
71(1)
3.2 Prospecting and exploration
71(10)
3.2.1 Finding signs of the mineral in the locality or general indications
71(1)
3.2.1.1 Geological studies
72(1)
3.2.1.2 Geo-chemical studies
72(1)
3.2.2 Finding the deposit or preliminary proving
73(1)
3.2.2.1 Geophysical methods/studies/surveys
73(4)
3.2.2.2 Putting exploratory headings
77(1)
3.2.3 Exploring the deposits or detailed proving - prospecting drilling
78(3)
3.3 Phases of prospecting and exploration program
81(1)
3.4 Site investigations for civil constructions, or any excavation project including tunnels and caverns
82(2)
3.5 Rocks and ground characterization
84(1)
3.5.1 Rock strength classification
84(1)
3.5.2 Rock mass classifications
85(1)
3.6 Rock quality designation (RQD)
85(8)
3.6.1 Q (Rock mass quality) system
87(1)
3.6.2 Geomechanics classification (RMR system)
87(4)
3.6.3 Rock structure rating (RSR)
91(2)
3.7 Geological and geotechnical factors
93(1)
3.8 The way forward
93(4)
Questions
95(1)
References
96(1)
4 Drilling
97(20)
4.1 Introduction - unit operations
97(1)
4.2 Primary rock breaking
97(1)
4.3 Drilling
98(1)
4.4 Operating components of the drilling system
98(1)
4.5 Mechanics of rock penetration
99(3)
4.5.1 Top-hammer drilling
100(1)
4.5.2 Down-the-hole (DTH) drilling
100(1)
4.5.3 Rotary drilling
101(1)
4.5.4 Augur drill
101(1)
4.5.5 Rotary abrasive drilling
102(1)
4.6 Rock drill classification
102(5)
4.6.1 Tunneling/development drill jumbos
105(1)
4.6.2 Shaft jumbos
105(1)
4.6.3 Ring drilling jumbos
105(1)
4.6.4 Fan drilling jumbos
106(1)
4.6.5 Wagon drill jumbos
106(1)
4.6.6 DTH drill jumbos
106(1)
4.6.7 Roof bolting jumbos
107(1)
4.7 Motive power of rock drills
107(1)
4.7.1 Electric drills
107(1)
4.7.2 Pneumatic drills
107(1)
4.7.3 Hydraulic drills
107(1)
4.8 Drilling accessories
108(3)
4.8.1 Extension drill steels
109(1)
4.8.2 Bits
109(2)
4.8.3 Impact of rock-type on drilling performance
111(1)
4.9 Selection of drill
111(1)
4.10 Summary - rocks drill applications
112(2)
4.11 Drilling postures
114(1)
4.12 The way forward
114(3)
Questions
114(2)
References
116(1)
5 Explosives and blasting
117(58)
5.1 Introduction - explosives
117(1)
5.2 Detonation and deflagration
117(1)
5.3 Common ingredients of explosives
118(1)
5.4 Classification of explosives
118(10)
5.4.1 Primary or initiating explosives
118(1)
5.4.2 Secondary explosives
119(1)
5.4.3 Pyrotechnic explosives
119(1)
5.4.4 Low explosives
119(1)
5.4.5 Commercial explosives - high explosives
120(1)
5.4.5.1 Gelatin explosives
120(1)
5.4.5.1.1 Dynamites (straight dynamite, ammonia dynamite)
120(1)
5.4.5.1.2 Blasting gelatin
121(1)
5.4.5.1.3 Semi gelatin
121(1)
5.4.5.2 Wet blasting agents
121(1)
5.4.5.2.1 Slurry explosives
122(1)
5.4.5.2.2 Emulsions
122(1)
5.4.5.2.3 Heavy ANFO
122(1)
5.4.5.3 Dry blasting agents
122(1)
5.4.5.3.1 Explosive ANFO
122(1)
5.4.5.3.2 ANFO mixing
123(1)
5.4.5.3.3 ANFO loading
123(1)
5.4.5.4 Pneumatic loaders and principles of loading
124(1)
5.4.5.4.1 Pressure type loaders
124(1)
5.4.5.4.2 Ejector type loader
125(1)
5.4.5.4.3 Combine type (combining pressure and ejecting features)
125(1)
5.4.5.5 Safety aspects
125(1)
5.4.5.6 Static hazards associated with ANFO loading
126(1)
5.4.5.7 Special types of explosives
127(1)
5.4.5.7.1 Permitted explosives
127(1)
5.4.5.7.2 Seismic explosives
127(1)
5.4.5.7.3 Overbreak control explosives
127(1)
5.4.6 Military explosives
127(1)
5.5 Blasting properties of explosives
128(6)
5.5.1 Strength
128(1)
5.5.2 Detonation velocity
129(2)
5.5.3 Density
131(1)
5.5.4 Water resistance
131(1)
5.5.5 Fume characteristics, or class, or medical aspects
131(1)
5.5.6 Oxygen balance
131(2)
5.5.7 Completion of reaction
133(1)
5.5.8 Detonation pressure
133(1)
5.5.9 Borehole pressure and critical diameter
133(1)
5.5.10 Sensitivity
133(1)
5.5.11 Safety in handling & storage qualities
134(1)
5.5.12 Explosive cost
134(1)
5.6 Explosive initiating devices/systems
134(8)
5.6.1 Detonator system
135(1)
5.6.1.1 Detonators
135(2)
5.6.1.2 Instantaneous detonators
137(1)
5.6.1.2.1 Plain detonator
137(1)
5.6.1.2.2 Instantaneous electric detonators
137(1)
5.6.1.3 Delay detonators
137(1)
5.6.1.3.1 Electric delay detonators
137(1)
5.6.1.3.2 Electronic delay detonators
138(1)
5.6.1.3.3 Non-electric delay detonators: detonating relays (ms connectors)
138(1)
5.6.1.3.4 Primadet and anodet non-electric delay blasting systems
139(1)
5.6.1.3.5 The nonel system
139(1)
5.6.1.3.6 Combine primadet-nonel system
140(1)
5.6.1.3.7 The hercudet blasting cap system
140(1)
5.6.1.3.8 Advantages of short delay blasting
140(1)
5.6.2 Fuse/cord system
141(1)
5.6.2.1 Safety fuse
141(1)
5.6.2.2 Detonating fuse/cord (DC)
141(1)
5.6.2.3 Igniter cords (IC)
141(1)
5.7 Explosive charging techniques
142(1)
5.7.1 Water gel (slurry loader)
143(1)
5.8 Blasting accessories
143(3)
5.8.1 Exploders
143(1)
5.8.2 Circuit testers
144(2)
5.8.3 Other blasting tools
146(1)
5.9 Firing systems - classification
146(1)
5.9.1 While firing with a safety fuse
146(1)
5.9.2 Firing with electric detonators
146(1)
5.9.3 Non-electric systems
146(1)
5.10 Ground blasting techniques
147(2)
5.10.1 Control/contour blasting
147(1)
5.10.1.1 Pre-splitting
147(1)
5.10.1.2 Cushion blasting
148(1)
5.10.1.3 Smooth blasting & buffer blasting
148(1)
5.10.1.4 Line drilling
149(1)
5.11 Secondary breaking
149(6)
5.11.1 Secondary rock breaking methods
150(1)
5.11.1.1 With the aid of explosives
150(1)
5.11.1.1.1 Plaster shooting
150(1)
5.11.1.1.2 Pop shooting
150(1)
5.11.1.1.3 Releasing jammed muck from the draw points
151(1)
5.11.2 Without aid of explosives
151(1)
5.11.2.1 Mechanical rock breaking
151(1)
5.11.2.1.1 Manual breaking
151(1)
5.11.2.1.2 Mechanical rock breakers
151(1)
5.11.2.1.3 Hydraulic rock breakers
151(1)
5.11.2.1.4 Teledyne rock breaker
152(1)
5.11.2.2 Electrical rock breaking
153(1)
5.11.2.2.1 Rock breaking by the use of high frequency current
153(2)
5.11.2.3 Hydraulic boulder splitter
155(1)
5.12 Use, handling, transportation and storage of explosives
155(2)
5.12.1 Magazine
156(1)
5.13 Explosive selection
157(1)
5.14 Blasting theory
158(5)
5.14.1 Adverse impacts of explosives
158(2)
5.14.1.1 Ground/land vibrations
160(2)
5.14.1.2 Air blast and noise
162(1)
5.14.1.3 Rock throw
162(1)
5.15 Drilling and blasting performance
163(2)
5.15.1 Percentages pull
163(1)
5.15.2 Over-break factor
163(1)
5.15.3 Degree of fragmentation
163(1)
5.15.4 Overall cost
163(2)
5.16 Recent trends in explosives and blasting technology
165(3)
5.17 Concluding remarks
168(7)
Questions
168(4)
References
172(3)
6 Mucking, casting and excavation
175(30)
6.1 Introduction
175(1)
6.2 Muck characteristics
176(1)
6.3 Classification
177(1)
6.4 Underground mucking units
177(9)
6.4.1 Overshot loaders
177(1)
6.4.2 Autoloaders - hopper loaders and LHDs
178(1)
6.4.2.1 Autoloaders - mucking and delivering
178(3)
6.4.2.2 Mucking and transporting - load haul and dump units (LHDs)
181(1)
6.4.2.2.1 Constructional details
181(1)
6.4.2.2.2 Special provisions
181(1)
6.4.2.2.3 Buckets of LHD and other dimensions
181(1)
6.4.2.2.4 LHD tyres
182(1)
6.4.2.2.5 Distance, gradient and speed
182(1)
6.4.2.2.6 Ventilation
182(1)
6.4.2.2.7 Latest developments
183(1)
6.4.2.3 Desirable features
183(1)
6.4.2.3.1 Perfect layout
183(1)
6.4.2.3.2 Suitable drainage and road maintenance
183(1)
6.4.2.3.3 Well-fragmented muck
184(1)
6.4.2.3.4 Maintenance
184(1)
6.4.2.3.5 Trained personnel
184(1)
6.4.2.4 Advantages
184(1)
6.4.2.5 Limitations
185(1)
6.4.2.6 Manufacturers
185(1)
6.5 Arm loaders
186(1)
6.5.1 Gathering-arm-loader (GAL)
186(1)
6.5.2 Arm loaders for sinking operations
186(1)
6.5.3 Riddle mucker
186(1)
6.5.4 Cryderman mucker
186(1)
6.5.5 Cactus-grab muckers
186(1)
6.5.6 Backhoe mucker
187(1)
6.6 Scrapers
187(1)
6.7 Mucking in tunnels
187(1)
6.7.1 Dipper and hydraulic shovels
188(1)
6.7.2 Mucking in TBM driven tunnels
188(1)
6.8 Surface - excavation, loading and casting units
188(1)
6.9 Wheel loaders - front end loaders
189(1)
6.10 Backhoe
190(1)
6.11 Hydraulic excavators
190(1)
6.12 Shovel
191(1)
6.13 Dragline
192(3)
6.13.1 Multi bucket excavators
195(1)
6.14 Bucket chain excavator (BCE)
195(1)
6.15 Bucket wheel excavator (BWE)
195(3)
6.16 Calculations for selection of shovel/excavator
198(2)
6.17 Total cost calculations
200(1)
6.18 Governing factors for the selection of mucking equipment
200(1)
6.19 The way forward
201(4)
Questions
202(2)
References
204(1)
7 Transportation - haulage and hoisting
205(44)
7.1 Introduction
205(1)
7.2 Haulage system
205(9)
7.2.1 Rail or track mounted - rope haulage
206(2)
7.2.1.1 Rope haulage calculations
208(1)
7.2.1.1.1 Direct rope haulage system
208(1)
7.2.1.1.2 Endless rope haulage system
209(1)
7.2.1.2 Scope and applications of rope haulage
209(1)
7.2.2 Locomotive haulage
209(1)
7.2.2.1 Electric locomotives
210(1)
7.2.2.2 Battery locomotives
211(1)
7.2.2.3 Combination locomotives
211(1)
7.2.2.4 Diesel locomotives
211(1)
7.2.2.5 Compressed air locomotives
212(1)
7.2.2.6 Other fittings
213(1)
7.2.2.7 Locomotive calculations
213(1)
7.3 Trackless or tyred haulage system
214(7)
7.3.1 Automobiles
214(1)
7.3.2 LHD
214(1)
7.3.3 Shuttle car
215(1)
7.3.4 Underground trucks
215(2)
7.3.4.1 Trackless or tyred haulage system
217(4)
7.4 Conveyor system
221(4)
7.4.1 Belt conveyors
221(2)
7.4.1.1 Conveyor calculations
223(1)
7.4.2 Cable belt conveyors
224(1)
7.4.3 Scraper chain conveyors
224(1)
7.5 Hoisting or winding system
225(9)
7.5.1 Head-frame or head-gear
226(1)
7.5.2 Shaft conveyances
226(1)
7.5.3 Rope equipment
226(2)
7.5.4 Classification of hoisting system
228(1)
7.5.4.1 Multi-rope friction winding system
229(2)
7.5.5 Hoisting cycle
231(1)
7.5.6 Calculations of suspended load during hoisting
231(3)
7.5.7 Use of safety devices with a hoisting system
234(1)
7.6 Aerial ropeway
234(2)
7.6.1 Aerial ropeway calculations
235(1)
7.7 Ropes
236(4)
7.7.1 Rope calculations
239(1)
7.8 Track and mine car
240(1)
7.8.1 Track
240(1)
7.8.2 Mine cars
240(1)
7.9 The way forward
241(8)
Questions
242(5)
References
247(2)
8 Supports
249(28)
8.1 Introduction - necessity of supports
249(1)
8.2 Classification of supports
250(1)
8.3 Self support by in-place (in-situ) rock
250(20)
8.3.1 Support by the use of natural pillars
250(2)
8.3.2 Use of artificial supports
252(1)
8.3.2.1 Brick and stone masonry
252(1)
8.3.2.2 Wooden (timber) supports
252(1)
8.3.2.2.1 Calculations with regard to wooden supports
253(3)
8.3.2.3 Steel supports
256(1)
8.3.2.3.1 Steel props, powered and shield supports
257(2)
8.3.2.3.2 Rock bolting
259(6)
8.3.2.4 Concrete supports
265(3)
8.3.2.5 Support by filling
268(2)
8.4 Selection of support
270(1)
8.4.1 Measures to preserve the stability of the stoped out workings or to minimize problems of ground stability
270(1)
8.5 Effect of ore extraction upon displacement of country rock and surface
271(1)
8.6 The way forward
272(5)
Questions
272(2)
References
274(3)
9 Drives and tunnels (conventional methods)
277(50)
9.1 Introduction - function of drives and tunnels
277(1)
9.2 Drivage techniques (for drives and tunnels)
277(1)
9.3 Drivage techniques with the aid of explosives
278(17)
9.3.1 Pattern of holes
278(1)
9.3.1.1 Mechanized-cut kerf
279(1)
9.3.1.2 Blasting off the solid
279(1)
9.3.1.2.1 Parallel hole cuts
279(12)
9.3.1.2.2 Verification of pattern of holes
291(1)
9.3.2 Charging and blasting the rounds
292(1)
9.3.2.1 Placement of primer
292(1)
9.3.2.2 Stemming
292(1)
9.3.2.3 Depth of round/hole
292(1)
9.3.2.4 Charge density in cut-holes and rest of the face area
292(1)
9.3.3 Smooth blasting
293(1)
9.3.3.1 Charging and blasting procedure
294(1)
9.3.3.2 Use of ANFO in drives and tunnels
295(1)
9.4 Muck disposal and handling (mucking and transportation)
295(3)
9.5 Ventilation
298(4)
9.5.1 Mine opening ventilation
299(1)
9.5.1.1 Using general air flow
299(1)
9.5.1.2 Using auxiliary fans: forcing, exhaust or contra rotating
299(2)
9.5.2 Ventilation during civil tunneling
301(1)
9.6 Working cycle (including auxiliary operations)
302(1)
9.7 Driving large sized drives/tunnels in tough rocks
303(2)
9.7.1 Full-face driving/tunneling
303(1)
9.7.2 Pilot heading technique
304(1)
9.7.3 Heading and bench method
305(1)
9.8 Conventional tunneling methods: tunneling through the soft ground and soft rocks
305(2)
9.9 Supports for tunnels and mine openings
307(7)
9.9.1 Classification
308(3)
9.9.2 Selection of supports
311(3)
9.10 Driving without aid of explosives
314(1)
9.11 Pre-cursor or prior to driving civil tunnels
315(2)
9.11.1 Site investigations
315(1)
9.11.2 Location of tunnels
315(1)
9.11.3 Rocks and ground characterization
315(2)
9.11.4 Size, shape, length and orientation (route) of tunnels
317(1)
9.11.5 Preparatory work required
317(1)
9.12 Past, present and future of tunneling technology
317(2)
9.13 Over-break and scaling - some innovations
319(1)
9.14 Longer rounds - some trials
319(3)
9.15 The way forward
322(5)
Questions
323(2)
References
325(2)
10 Tunneling by roadheaders and impact hammers
327(18)
10.1 Tunneling by boom-mounted roadheaders
327(3)
10.2 Classification boom-mounted roadheaders
330(1)
10.2.1 Ripper (transverse) type roadheaders - (Cutter heads with rotation perpendicular to the boom axis)
330(1)
10.2.1.1 Bar type
331(1)
10.2.1.2 Disc type
331(1)
10.3 Milling or longitudinal (auger) roadheaders
331(2)
10.3.1 Borer type roadheaders
332(1)
10.4 Classification based on weight
333(1)
10.5 Advantages of roadheaders
333(1)
10.6 Important developments
333(2)
10.7 Procedure of driving by the heading machines
335(1)
10.8 Auxiliary operations
336(1)
10.8.1 Ground support
336(1)
10.9 Hydraulic impact hammer tunneling
336(1)
10.10 Excavation procedure and cycle of operations
336(2)
10.10.1 Hammer's working cycle
337(1)
10.11 Merit and limitations
338(1)
10.12 Partial face rotary rock tunneling machines
338(1)
10.13 Excavators
339(1)
10.13.1 Excavators mounted within shield
339(1)
10.13.1.1 Excavator buckets
339(1)
10.14 Excavator with multiple tool miner (MTM) attachments
340(2)
10.14.1 Excavator mounted within a shield
340(1)
10.14.2 Excavator-mounted cutter booms (Partial face machines for NATM)
341(1)
10.15 The way forward
342(3)
Questions
342(1)
References
343(2)
11 Full-face tunnel borers (TBMs) & special methods
345(48)
11.1 Introduction
345(1)
11.1.1 Improved understanding
345(1)
11.2 Tunneling methods and procedures
346(1)
11.3 Full-face tunneling machines
347(11)
11.3.1 Full-face tunnel borers (mechanical) TBM - open and shielded
348(3)
11.3.2 Mechanical excavation of the full cross-section with open type machines
351(1)
11.3.2.1 Open main beam machines
351(2)
11.3.2.2 Single shield
353(1)
11.3.2.3 Double shield
353(1)
11.3.2.4 Enlarging TBM
354(4)
11.4 Mini tunnel borers
358(1)
11.5 Boring system
358(1)
11.6 Rock cutting tools and their types
359(2)
11.6.1 Cutting head configuration
359(2)
11.7 TBM performance
361(1)
11.7.1 Economical aspects
361(1)
11.8 Size of unit and its overall length including its trailing gear
362(1)
11.8.1 Advantages
362(1)
11.8.2 Disadvantages
362(1)
11.9 Backup system/activities
363(2)
11.9.1 Muck disposal
363(1)
11.9.2 Single track
363(1)
11.9.3 Double track
363(1)
11.9.4 Continuous conveyor system
363(1)
11.9.5 Other back-ups include
364(1)
11.10 TBMs for soft ground/formations
365(10)
11.10.1 Full-face shield with picks
365(2)
11.10.2 Compressed air shields
367(2)
11.10.3 Slurry shield
369(1)
11.10.4 Earth pressure balance
369(1)
11.10.4.1 Segments
370(1)
11.10.4.2 Back filling
370(1)
11.10.4.3 Auxiliary construction measures
371(1)
11.10.5 Developments
372(3)
11.11 Phases of tunneling project
375(1)
11.11.1 Tunnel portal
375(1)
11.11.2 Phases of a TBM project
375(1)
11.12 Future technology
375(3)
11.12.1 Hard rock TBMs
376(1)
11.12.2 Soft ground machines
376(2)
11.13 New Austrian tunneling method (NATM)
378(4)
11.13.1 NATM design philosophy and typical features
378(1)
11.13.2 Ground categories and tunneling procedures
379(1)
11.13.2.1 Excavation sequence
379(1)
11.13.3 Semi-mechanized methods
379(3)
11.14 Tunneling through abnormal or difficult ground using special methods
382(4)
11.14.1 Ground treatment
382(1)
11.14.1.1 Reinforcement
382(1)
11.14.1.2 Treatment that tackles the problems arising due to the presence of water
383(1)
11.14.1.3 Lowering water table/ground water
383(1)
11.14.1.4 Use of compressed air to hold back water
383(2)
11.14.1.5 Grouting
385(1)
11.14.1.6 Freezing -
386(1)
11.15 Cut and cover method of tunneling
386(1)
11.16 Submerged tubes/tunnels
386(1)
11.17 The way forward
387(6)
Questions
387(2)
References
389(4)
12 Planning
393(46)
12.1 Economic studies
393(5)
12.1.1 Phases or stages in economic studies
393(1)
12.1.1.1 Preliminary studies or valuation
394(1)
12.1.1.2 Intermediate economic study or pre-feasibility study
394(1)
12.1.1.3 Feasibility study
394(1)
12.1.1.3.1 Information on deposit
394(1)
12.1.1.3.2 Information on general project economics
395(1)
12.1.1.3.3 Mining method selection
395(1)
12.1.1.3.4 Processing methods
395(1)
12.1.1.3.5 Ecology
395(1)
12.1.1.3.6 Capital and operating costs estimates
396(1)
12.1.1.3.7 Project cost & rates of return
396(1)
12.1.1.3.8 Comments
396(1)
12.1.2 Conceptual mine planning and detailed project reports
396(1)
12.1.2.1 Conceptual studies/models
396(2)
12.1.2.2 Engineering studies
398(1)
12.1.2.3 Models and detailed design
398(1)
12.2 Mine design elements
398(11)
12.2.1 Mineral resources and reserves
400(2)
12.2.2 Cutoff grade
402(3)
12.2.2.1 Mining & process plant input-output calculations (for a copper mining complex)
405(1)
12.2.2.2 Cutoff grade calculations
406(1)
12.2.3 Interrelationship amongst the mine design elements
406(1)
12.2.4 Mine life
407(1)
12.2.4.1 Phases or stages during mine life
408(1)
12.3 Dividing property for the purpose of underground mining
409(4)
12.3.1 Panel system
411(1)
12.3.2 Level system
411(1)
12.3.3 Level interval
412(1)
12.4 Mine planning duration
413(1)
12.5 Mine development - introduction
414(1)
12.6 Access to deposit or means of mine access
415(2)
12.7 System - opening up a deposit
417(3)
12.7.1 Opening deposit in parts
417(1)
12.7.2 Opening up the whole deposit
417(3)
12.8 Positioning and developing the main haulage levels
420(6)
12.8.1 Selecting development in ore or rock (country rock)
420(3)
12.8.2 Vertical development in the form of raises
423(1)
12.8.3 Connecting main levels by ramps/declines/slopes
424(1)
12.8.4 Determination of optimal load concentration point
424(1)
12.8.4.1 Analytical method
424(1)
12.8.4.2 Graphical method: funicular diagram
425(1)
12.9 Size and shape of mine openings and tunnels
426(2)
12.10 Pit top layouts
428(1)
12.11 Pit bottom layouts
428(3)
12.11.1 Types of pit bottom layouts
429(2)
12.12 Structures concerning pit bottom layouts
431(1)
12.13 The way forward
431(8)
Questions
432(5)
References
437(2)
13 Excavations in upward direction - raising
439(30)
13.1 Introduction
439(1)
13.2 Raise applications in civil and construction industries
439(1)
13.3 Classification - types of raises for mines
440(1)
13.4 Raise driving techniques
441(1)
13.5 Conventional raising method: open raising
441(1)
13.6 Conventional raising method: raising by compartment
442(1)
13.7 Raising by the use of mechanical climbers: Jora hoist
443(1)
13.8 Raising by mechanical climbers: Alimak raise climber
443(6)
13.8.1 Preparatory work and fittings
447(1)
13.8.2 Ignition and telephone systems
447(1)
13.8.3 Cycle of operations
447(1)
13.8.4 Performance
448(1)
13.8.5 Design variants
448(1)
13.8.6 Air-driven unit
448(1)
13.8.7 Electrically driven unit
448(1)
13.8.8 Diesel-hydraulic unit
449(1)
13.9 Blasthole raising method: long-hole raising
449(4)
13.9.1 Marking the raise
449(1)
13.9.2 Equipment installation
449(1)
13.9.3 Drilling
450(1)
13.9.4 Raise correlation
450(1)
13.9.5 Blowing and plugging the holes
450(1)
13.9.6 Charging and blasting
451(1)
13.9.7 Limitations
452(1)
13.9.8 Advantages
452(1)
13.10 Blasthole raising method: drop raising
453(3)
13.11 Raising by the application of raise borers
456(3)
13.12 Raise boring in a package - BorPak
459(1)
13.13 Ore pass/waste rock pass
459(5)
13.13.1 Size and shape
460(1)
13.13.2 Ore pass lining
461(1)
13.13.3 Design consideration of rock pass/ore pass
461(3)
13.14 The way forward
464(5)
Questions
465(1)
References
466(3)
14 Shaft sinking
469(34)
14.1 Introduction
469(1)
14.2 Location
469(1)
14.3 Preparatory work required
470(1)
14.4 Sinking appliances, equipment and services
470(2)
14.5 Sinking methods and procedure
472(1)
14.6 Reaching up to the rock head
472(2)
14.6.1 Pre-sink
473(1)
14.7 Sinking through the rock
474(9)
14.7.1 Drilling
475(2)
14.7.2 Blasting
477(1)
14.7.3 Lashing and mucking
478(1)
14.7.4 Hoisting
478(2)
14.7.5 Support or shaft lining
480(1)
14.7.6 Auxiliary operations
480(1)
14.7.6.1 Dewatering
480(1)
14.7.6.2 Ventilation
480(2)
14.7.6.3 Illumination
482(1)
14.7.6.4 Shaft centering
482(1)
14.7.6.5 Station construction and initial development
482(1)
14.8 Special methods of shaft sinking
483(1)
14.9 Piling system
484(1)
14.10 Caisson method
484(3)
14.10.1 Sinking drum process
484(2)
14.10.2 Forced drop-shaft method
486(1)
14.10.3 Pneumatic caisson method
486(1)
14.11 Special methods by temporary or permanent isolation of water
487(1)
14.11.1 Cementation
487(1)
14.11.1.1 Boring/Drilling
487(1)
14.11.1.2 Cementation
487(1)
14.11.1.3 Sinking and walling
488(1)
14.12 The freezing process
488(7)
14.12.1 Drilling and lining of boreholes
489(1)
14.12.2 Formation and maintenance of the ice column
490(1)
14.12.3 Actual sinking operations
491(1)
14.12.4 Thawing of ice wall
491(1)
14.12.5 Freezing - shafts
492(1)
14.12.6 Ground freezing practices in Germany
492(3)
14.13 Shaft drilling and boring
495(2)
14.13.1 Shaft drilling
495(1)
14.13.2 Shaft boring
495(2)
14.14 Safety in sinking shafts
497(2)
14.14.1 Field tests and measurements
497(2)
14.15 The way forward
499(4)
Questions
500(1)
References
501(2)
15 Large sub-surface excavations
503(24)
15.1 Introduction
503(1)
15.2 Caverns
503(5)
15.2.1 Constructional details - important aspects
505(1)
15.2.1.1 Construction procedure
506(2)
15.3 Powerhouse caverns
508(1)
15.4 Oil storage caverns
508(1)
15.5 Repository
509(3)
15.6 Salt cavern storage
512(1)
15.7 Aquifer storage
513(1)
15.8 Exhibition hall caverns
514(2)
15.9 Underground chambers in mines
516(1)
15.10 Equipment and services selection
517(5)
15.11 The way forward
522(5)
Questions
523(1)
References
524(3)
16 Underground mining/stoping methods & mine closure
527(158)
16.1 Introduction
527(13)
16.1.1 Factors governing choice of a mining method
527(1)
16.1.1.1 Shape and size of the deposit
527(1)
16.1.1.2 Thickness of deposit
528(1)
16.1.1.3 Dip of the deposit
529(1)
16.1.1.4 Physical and mechanical characteristics of the ore and the enclosing rocks
529(3)
16.1.1.5 Presence of geological disturbances and influence of the direction of cleats or partings
532(1)
16.1.1.6 Degree of mechanization and output required
532(2)
16.1.1.7 Ore grade and its distribution, and value of the product
534(1)
16.1.1.8 Depth of the deposit
534(1)
16.1.1.9 Presence of water
535(1)
16.1.1.10 Presence of gases
535(1)
16.1.1.11 Ore & country rock susceptibility to caking and oxidation
535(1)
16.1.2 Desirable features of selecting a stoping method
536(2)
16.1.3 Classification - stoping methods
538(2)
16.2 Open stoping methods
540(24)
16.2.1 Open stoping method - room & pillar stoping
540(1)
16.2.1.1 Introduction
540(1)
16.2.1.2 Stope preparation
540(1)
16.2.1.3 Unit operations
541(3)
16.2.1.4 Stoping operations
544(1)
16.2.1.5 Bord and pillar
545(1)
16.2.1.6 Block system
546(2)
16.2.1.7 Stope and pillar
548(1)
16.2.1.7.1 Advantages
549(1)
16.2.1.7.2 Limitations
549(1)
16.2.2 Open stoping method - shrinkage stoping
549(1)
16.2.2.1 Introduction
549(2)
16.2.2.2 Stope preparation
551(1)
16.2.2.3 Unit operations
551(1)
16.2.2.4 Stoping operations
552(1)
16.2.2.5 Layouts
552(1)
16.2.2.5.1 Winning the pillars
552(1)
16.2.2.5.2 Advantages
552(1)
16.2.2.5.3 Limitations
553(1)
16.2.3 Open stoping method - sublevel stoping
553(1)
16.2.3.1 Introduction
553(1)
16.2.3.2 Sublevel stoping with benching
554(1)
16.2.3.3 Blasthole stoping
554(1)
16.2.3.4 Longitudinal sublevel stoping
554(2)
16.2.3.5 Transverse sublevel stoping
556(1)
16.2.3.6 Blasthole drilling
556(2)
16.2.4 Large blasthole stoping
558(1)
16.2.4.1 Stope preparation (general procedure)
558(4)
16.2.4.2 VCR method
562(1)
16.2.4.3 Unit operations
562(1)
16.2.4.4 Layouts
563(1)
16.2.4.4.1 Advantages
564(1)
16.2.4.4.2 Limitations
564(1)
16.2.4.4.3 Winning the pillars
564(1)
16.3 Supported stoping methods
564(20)
16.3.1 Supported stoping method - stull stoping
564(1)
16.3.1.1 Introduction
564(2)
16.3.1.2 Unit operations
566(1)
16.3.1.3 Auxiliary operations
566(1)
16.3.1.4 Stope preparation
566(1)
16.3.1.5 Stoping
566(1)
16.3.1.6 Layouts
566(1)
16.3.1.6.1 Variants
567(1)
16.3.1.6.2 Advantages
567(1)
16.3.1.6.3 Limitations
567(1)
16.3.2 Supported stoping method: cut & fill stoping
567(1)
16.3.2.1 Introduction
567(1)
16.3.2.2 Stope preparation
568(1)
16.3.2.3 Stoping
569(1)
16.3.2.4 Unit operations
569(1)
16.3.2.5 Auxiliary operations
570(1)
16.3.2.5.1 Advantages
570(1)
16.3.2.5.2 Limitations
570(1)
16.3.2.5.3 Variants
570(1)
16.3.2.6 Cut and fill with flat back
571(1)
16.3.2.7 Cut and fill with inclined slicing
572(1)
16.3.2.8 Post and pillar cut and fill stoping
572(2)
16.3.2.9 Stope drive or undercut and fill stoping
574(1)
16.3.2.9.1 Filling methods during deep mining
574(2)
16.3.2.9.2 Top slicing (An undercut-and-fill method)
576(1)
16.3.2.9.3 Filling materials
577(5)
16.3.3 Supported stoping method - square set stoping
582(1)
16.3.3.1 Introduction
582(1)
16.3.3.2 Stope preparation
582(1)
16.3.3.3 Stoping
583(1)
16.3.3.4 Unit operations
583(1)
16.3.3.5 Auxiliary operations
583(1)
16.3.3.6 Layouts
583(1)
16.3.3.6.1 Advantages
584(1)
16.3.3.6.2 Limitations
584(1)
16.4 Caving methods
584(29)
16.4.1 Caving method - longwall mining
584(1)
16.4.1.1 Introduction
584(1)
16.4.1.2 Unit operations
585(1)
16.4.1.3 While mining coal
585(1)
16.4.1.4 Stope preparation
585(1)
16.4.1.5 Stoping operations
586(1)
16.4.1.6 Layouts
586(3)
16.4.1.6.1 Advantages
589(1)
16.4.1.6.2 Limitations
589(1)
16.4.1.7 Mining at ultra depths
590(4)
16.4.2 Caving method - sublevel caving
594(1)
16.4.2.1 Introduction
594(2)
16.4.2.2 Unit operations
596(1)
16.4.2.2.1 Variants
596(1)
16.4.2.3 Stope preparation (transverse sublevel caving)
596(2)
16.4.2.4 Stope preparation (sublevel caving - longitudinal)
598(1)
16.4.2.5 Layouts
598(1)
16.4.2.5.1 Advantages
598(1)
16.4.2.5.2 Limitations
599(1)
16.4.3 Caving method - block caving
600(1)
16.4.3.1 Introduction
600(1)
16.4.3.2 Unit operations
601(1)
16.4.3.2.1 Variants
602(2)
16.4.3.3 Methods of draw
604(1)
16.4.3.4 Stope preparation
605(1)
16.4.3.5 Layouts
606(6)
16.4.3.5.1 Advantages
612(1)
16.4.3.5.2 Limitations
612(1)
16.5 Common aspects
613(20)
16.5.1 Stope design
616(1)
16.5.1.1 Model parameters
616(1)
16.5.1.2 Design parameters
617(3)
16.5.2 Application of computers in stope design and economic analysis
620(1)
16.5.3 Proposed methodology for selection of a stoping method for the base metal deposits with a case study
620(13)
16.6 Mine liquidation
633(13)
16.6.1 Liquidation of the stopes of different types
633(1)
16.6.2 Planning liquidation
634(1)
16.6.3 Liquidation techniques
634(1)
16.6.4 Pillar types & methods of their extraction
635(1)
16.6.4.1 Pillar extraction methods
636(1)
16.6.4.2 Planning a heavy-blast for liquidation purpose
637(1)
16.6.5 Case studies
637(1)
16.6.5.1 Heavy blasting at a copper mine
637(5)
16.6.5.2 Remnant pillars' blast at lead-zinc mine
642(1)
16.6.5.2.1 Blast planning
642(1)
16.6.5.2.2 Results of the blast
643(3)
16.7 Planning for mine closure
646(25)
16.7.1 Introduction
646(1)
16.7.2 Phases - mine closure
646(1)
16.7.3 The integrated mine closure planning guidelines (toolkit)
646(2)
16.7.3.1 Salient features (parameters to be considered) for closure planning
648(4)
16.7.3.2 Guidelines/toolkit details
652(16)
16.7.3.3 Glossary
668(3)
16.8 The way forward
671(14)
Questions
671(10)
References
681(4)
17 Surface excavations
685(68)
17.1 Introduction - surface mining methods
685(1)
17.2 Open pit mining
685(10)
17.2.1 Open pit elements
686(2)
17.2.1.1 Bench angle or slope
688(1)
17.2.2 Overall pit slope angle
688(1)
17.2.2.1 Computation of overall pit slope angle
688(3)
17.2.3 Stripping ratio
691(2)
17.2.4 Overall pit profile
693(1)
17.2.4.1 Coning concept for open pit design
693(1)
17.2.5 Stripping sequence
694(1)
17.3 Haul roads
695(1)
17.4 Ramp and its gradient
695(2)
17.5 Open cast mining/strip mining
697(24)
17.5.1 Introduction
697(1)
17.5.2 Design aspects
697(1)
17.5.3 Operational details - surface mines
698(1)
17.5.3.1 Planning
699(1)
17.5.3.2 Site preparation
699(1)
17.5.3.3 Opening up the deposit
699(2)
17.5.4 Development
701(1)
17.5.4.1 Waste rock dumps
701(1)
17.5.5 Bench blasting design patterns
701(1)
17.5.5.1 Linear formulas
702(2)
17.5.5.2 Power formulas derived by statistical analysis
704(1)
17.5.5.3 Formulas related to energy transfer in rock blasting, burden and blasthole diameter
704(1)
17.5.5.4 Tatiya and Adel's formula to determine burden with respect to blasthole diameter
705(1)
17.5.5.5 Powder factor method
705(1)
17.5.6 Drilling and blasting operations
706(3)
17.5.7 Cast blasting
709(1)
17.5.8 Muck handling
710(1)
17.5.9 Selection of excavator and transportation units
710(1)
17.5.10 Calculations for selection of shovel/excavator
710(1)
17.5.10.1 Time factor
710(1)
17.5.10.2 Operational factor (Of)
710(1)
17.5.10.3 Bucket fill factor (Bf)
711(3)
17.5.11 Theoretical output from an excavator/hr
714(1)
17.5.12 Output from a continuous flow unit
715(1)
17.5.13 Transportation schemes
715(1)
17.5.14 In-pit crushing and conveying
715(1)
17.5.15 Dumping site
716(3)
17.5.16 Integrated or matching equipment complex
719(1)
17.5.16.1 Global Positioning System (GPS)
720(1)
17.5.17 Quarrying of dimension stones
720(1)
17.6 Quarrying of dimension stones
721(14)
17.6.1 Drilling
721(5)
17.6.2 Line drilling
726(1)
17.6.3 Discontinuous or spaced drilling
727(1)
17.6.4 Drilling and blasting
727(3)
17.6.4.1 Blast results at Vanga granite quarry in southern Sweden
730(1)
17.6.5 Wire cutter - helicoid and diamond
731(3)
17.6.6 Cutter saw and rock channellers (impact cutting machines)
734(1)
17.6.6.1 Merits
735(1)
17.6.6.2 Disadvantages
735(1)
17.7 The diamond belt saw
735(3)
17.7.1 Water jet technology
736(1)
17.7.2 Thermal cutting
737(1)
17.7.3 Underground quarrying
738(1)
17.8 Earth movers
738(7)
17.9 The way forward
745(8)
Questions
745(6)
References
751(2)
18 Hazards, occupational health and safety (OHS), environment and loss prevention
753(54)
18.1 Introduction
753(1)
18.2 Potential excavation hazards
754(4)
18.2.1 Hazards (risks) analysis and management
757(1)
18.3 Safety and accidents
758(20)
18.3.1 Terminology
758(1)
18.3.2 Safety strategies
759(1)
18.3.3 Safety elements
760(1)
18.3.3.1 People/mine workers
760(8)
18.3.3.2 The systems
768(2)
18.3.3.3 The working environment (conditions)
770(1)
18.3.4 Accidents
771(1)
18.3.4.1 Accidents/incident analysis & calculations
771(2)
18.3.4.2 Common accident areas/heads
773(1)
18.3.4.3 Accident costs
774(1)
18.3.4.4 Remedial measures
774(1)
18.3.4.5 Measures/preparedness
774(1)
18.3.4.6 Hazards analysis methods
774(4)
18.4 Occupational health and surveillance
778(8)
18.4.1 Industrial hygiene
778(1)
18.4.1.1 Aqueous effluents - permissible quality & efficient discharge
778(1)
18.4.1.2 House keeping
779(1)
18.4.1.3 The 5S concept
779(1)
18.4.2 Working conditions
780(1)
18.4.3 Ergonomics
781(1)
18.4.3.1 Introduction
781(1)
18.4.3.2 Impacts of poor ergonomics
781(1)
18.4.4 Occupational health surveillance
782(1)
18.4.4.1 Organizational culture and workplace stresses
783(1)
18.4.4.2 `Presenteeism' - lost performance at work
784(1)
18.4.4.3 Periodic health surveillance: based on exposure-risk
784(1)
18.4.4.4 Notified diseases and preventive measures
785(1)
18.5 Environment degradation and mitigation measures
786(2)
18.5.1 Balance system/equation
787(1)
18.5.2 Environmental degradation
787(1)
18.5.3 Environmental management
788(1)
18.5.4 Environmental system
788(1)
18.6 Loss prevention
788(13)
18.6.1 Classification - losses
788(3)
18.6.2 Abnormalities
791(2)
18.6.3 5W-2H analysis
793(5)
18.6.4 Wastage
798(1)
18.6.5 Case-study illustrating computation of financial losses
799(1)
18.6.6 Use of Information Technology (IT) in integrating processes and information
800(1)
18.7 The way forward
801(6)
Questions
802(3)
References
805(2)
19 Sustainable Development
807(35)
19.1 Sustainable Development (SD) in mining
807(2)
19.1.1 Sustainable development
807(1)
19.1.2 Global issues & backlog on sustainable development
807(1)
19.1.3 Sustainable development in mining
807(2)
19.2 Stakeholders and sustainable development
809(4)
19.2.1 Principles/guidelines for SD by ICMM
809(2)
19.2.2 Status of SD in mining, based on stakeholders' views though a survey by globalscan
811(2)
19.3 Scenarios influencing mining industry
813(6)
19.3.1 Population growth and resulting impacts/implications
813(1)
19.3.2 Use of minerals by world's citizens
813(2)
19.3.3 Mineral consumption trends
815(1)
19.3.4 Status of quality, quantity, type of mineral and resources depletion
815(2)
19.3.5 Mineral consumption prediction
817(1)
19.3.6 Mining industry's inherent problems and challenges
818(1)
19.3.7 Global risk ranking and competitiveness in the mining sector
819(1)
19.4 Is mining industry equipped to meet the challenges?
819(2)
19.4.1 Technological developments in mining
819(2)
19.4.2 Initiatives already taken globally to meet demand of minerals mass consumption
821(1)
19.5 Proposed strategy to run mines is an economically viable (beneficial) way
821(13)
19.5.1 Exploration: huge, intensive & speedy together with bringing precision in ore evaluation techniques
822(1)
19.5.2 Establishing mineral inventory, cutoff grade and ore reserves
822(1)
19.5.3 Division of mineral property (i.e. orebody or coal deposits into level and panels)
823(1)
19.5.4 Locale-specific challenges and proposed solutions/way-outs
824(1)
19.5.4.1 Underground metalliferous mining challenges
824(1)
19.5.4.2 Underground coal mining challenges
824(1)
19.5.4.3 Open cast/open pit mines (coal & non coal) challenges
825(1)
19.5.5 Mining difficult deposits using non-conventional technologies
826(1)
19.5.6 Improved fragmentation - a better way to extract minerals (ore, waste rocks, overburden) to save energy
826(1)
19.5.7 Precision in operations - maximizing recovery
827(1)
19.5.8 The critical path to full automation
828(5)
19.5.9 Effective utilization of resources through standardization & benchmarking
833(1)
19.5.10 Needs-based changes, research and development
833(1)
19.6 Measures for SD through improvements environmentally, socially and ethically
834(2)
19.6.1 HSE - a critical business activity for sustainable development
834(1)
19.6.2 Economic development regional as well as local - A case-study
835(1)
19.7 Legal compliances and mining policy'
836(2)
19.7.1 Mining laws - legislation
836(1)
19.7.2 Minerals & mining policy
837(1)
19.8 Quality of human resources
838(1)
19.8.1 Academic (educational) status and standard of mining schools
838(1)
19.9 The ultimate aim
839(1)
19.9.1 Contented employees & stakeholders
839(1)
19.9.2 Efficient systems including best practices
840(1)
19.9.3 Legal compliance including Environment Management Systems (EMS)
840(1)
19.9.4 World Class Management (WCM)
840(1)
19.10 The way forward: proposed milestones/strategy
840(2)
Questions 842(3)
References 845(2)
Subject index 847
Dr. Ratan Tatiya is a consultant in the areas of excavation, construction, mining and allied disciplines and in a career spanning more than 42 years he has held senior positions in the industry, as a professor, researcher and consultant and has worked with multinationals from more than 40 countries. His industrial background has led to this book being industrially relevant and his academic background has ensured that the fundamentals and basics required to help readers have been included.