Muutke küpsiste eelistusi

Survival Analysis with Interval-Censored Data: A Practical Approach with Examples in R, SAS, and BUGS [Kõva köide]

, (Biostatistical Centre, Leuven, Belgium), (Kiostatistical Centre, Leuven, Belgium)
  • Formaat: Hardback, 616 pages, kõrgus x laius: 234x156 mm, kaal: 1060 g, 45 Tables, black and white; 82 Illustrations, black and white
  • Sari: Chapman & Hall/CRC Interdisciplinary Statistics
  • Ilmumisaeg: 14-Nov-2017
  • Kirjastus: Chapman & Hall/CRC
  • ISBN-10: 1420077473
  • ISBN-13: 9781420077476
Teised raamatud teemal:
  • Formaat: Hardback, 616 pages, kõrgus x laius: 234x156 mm, kaal: 1060 g, 45 Tables, black and white; 82 Illustrations, black and white
  • Sari: Chapman & Hall/CRC Interdisciplinary Statistics
  • Ilmumisaeg: 14-Nov-2017
  • Kirjastus: Chapman & Hall/CRC
  • ISBN-10: 1420077473
  • ISBN-13: 9781420077476
Teised raamatud teemal:
Survival Analysis with Interval-Censored Data: A Practical Approach with Examples in R, SAS, and BUGS provides the reader with a practical introduction into the analysis of interval-censored survival times. Although many theoretical developments have appeared in the last fifty years, interval censoring is often ignored in practice. Many are unaware of the impact of inappropriately dealing with interval censoring. In addition, the necessary software is at times difficult to trace. This book fills in the gap between theory and practice.

Features:

-Provides an overview of frequentist as well as Bayesian methods.

-Include a focus on practical aspects and applications.

-Extensively illustrates the methods with examples using R, SAS, and BUGS. Full programs are available on a supplementary website.





The authors:

Kris Bogaerts is project manager at I-BioStat, KU Leuven. He received his PhD in science (statistics) at KU Leuven on the analysis of interval-censored data. He has gained expertise in a great variety of statistical topics with a focus on the design and analysis of clinical trials.

Arnot Komárek is associate professor of statistics at Charles University, Prague. His subject area of expertise covers mainly survival analysis with the emphasis on interval-censored data and classification based on longitudinal data. He is past chair of the Statistical Modelling Society and editor of Statistical Modelling: An International Journal.

Emmanuel Lesaffre is professor of biostatistics at I-BioStat, KU Leuven. His research interests include Bayesian methods, longitudinal data analysis, statistical modelling, analysis of dental data, interval-censored data, misclassification issues, and clinical trials. He is the founding chair of the Statistical Modelling Society, past-president of the International Society for Clinical Biostatistics, and fellow of ISI and ASA.

Arvustused

"The authors succeeded in providing a practical text focused on the application of interval-censored data using various statistical software. Lastly, the authors wrote a text, which appeals to practitioners, because the text anticipates their needs and the foundational concepts and software to execute it." ~ Stephanie A. Besser

"All chapters spend a significant amount of time walking through examples with associated R code and results and do a very nice job explaining the initial CSE framework. Examples expand in complexity as the book progresses. As a biostatistician working in an academic setting, I am quite familiar with simulations used to construct new trials. However, the concept of CSE framework was brand new to me, and I think the strategies outlined in this book could definitely improve my approach to designing trial and analysis plans! This would also facilitate discussions with the clinical study team on how to proceed given our results. I would recommend this book to any clinical trial statistician who is interested in exploring simulations to better understand the implications of selected design and analysis strategies within their trials." ~Emily Dressler, Wake Forest School of Medicine

"To the best of my knowledge, this is the first book to provide a comprehensive treatment of the analysis of interval-censored data using common software such as SAS, R, and BUGS. I expect that applied statisticians and public health researchers with interest in statistical analysis of interval-censored data will find the book very useful. In addition, it seems well suited to be a reference book for a graduate-level survival analysis course. Overall, I enjoyed the presentation of the main idea of the methodology and the discussion of the strengths and limitations of approaches. If I had an opportunity to teach statistical methods for interval-censored data, I would select this book as a required text." ~ Minggen Lu, The American Statistician

List of Tables xvii
List of Figures xxi
Notation xxvii
Preface xxix
I Introduction 1(60)
1 Introduction
3(32)
1.1 Survival concepts
3(1)
1.2 Types of censoring
4(4)
1.2.1 Right censoring
4(1)
1.2.2 Interval and left censoring
4(1)
1.2.3 Some special cases of interval censoring
5(2)
1.2.4 Doubly interval censoring
7(1)
1.2.5 Truncation
8(1)
1.3 Ignoring interval censoring
8(5)
1.4 Independent noninformative censoring
13(2)
1.4.1 Independent noninformative right censoring
13(1)
1.4.2 Independent noninformative interval censoring
14(1)
1.5 Frequentist inference
15(5)
1.5.1 Likelihood for interval-censored data
15(2)
1.5.2 Maximum likelihood theory
17(3)
1.6 Data sets and research questions
20(10)
1.6.1 Homograft study
20(2)
1.6.2 Breast cancer study
22(1)
1.6.3 AIDS clinical trial
22(1)
1.6.4 Sensory shelf life study
23(2)
1.6.5 Survey on mobile phone purchases
25(2)
1.6.6 Mastitis study
27(1)
1.6.7 Signal Tandmobiel study
28(2)
1.7 Censored data in R and SAS
30(5)
1.7.1 R
30(4)
1.7.2 SAS
34(1)
2 Inference for right-censored data
35(26)
2.1 Estimation of the survival function
35(6)
2.1.1 Nonparametric maximum likelihood estimation
35(3)
2.1.2 R solution
38(2)
2.1.3 SAS solution
40(1)
2.2 Comparison of two survival distributions
41(5)
2.2.1 Review of significance tests
41(3)
2.2.2 R solution
44(1)
2.2.3 SAS solution
45(1)
2.3 Regression models
46(17)
2.3.1 Proportional hazards model
46(7)
2.3.1.1 Model description and estimation
46(1)
2.3.1.2 Model checking
47(3)
2.3.1.3 R solution
50(2)
2.3.1.4 SAS solution
52(1)
2.3.2 Accelerated failure time model
53(10)
2.3.2.1 Model description and estimation
53(2)
2.3.2.2 Model checking
55(1)
2.3.2.3 R solution
56(2)
2.3.2.4 SAS solution
58(3)
II Frequentist methods for interval-censored data 61(220)
3 Estimating the survival distribution
63(42)
3.1 Nonparametric maximum likelihood
63(14)
3.1.1 Estimation
63(4)
3.1.2 Asymptotic results
67(1)
3.1.3 R solution
68(3)
3.1.4 SAS solution
71(6)
3.2 Parametric modelling
77(8)
3.2.1 Estimation
78(1)
3.2.2 Model selection
78(1)
3.2.3 Goodness of fit
78(2)
3.2.4 R solution
80(2)
3.2.5 SAS solution
82(3)
3.3 Smoothing methods
85(19)
3.3.1 Logspline density estimation
85(5)
3.3.1.1 A smooth approximation to the density
85(1)
3.3.1.2 Maximum likelihood estimation
86(1)
3.3.1.3 R solution
87(3)
3.3.2 Classical Gaussian mixture model
90(3)
3.3.3 Penalized Gaussian mixture model
93(12)
3.3.3.1 R solution
99(5)
3.4 Concluding remarks
104(1)
4 Comparison of two or more survival distributions
105(26)
4.1 Nonparametric comparison of survival curves
105(22)
4.1.1 Weighted log-rank test: derivation
107(2)
4.1.2 Weighted log-rank test: linear form
109(1)
4.1.3 Weighted log-rank test: derived from the linear transformation model
109(2)
4.1.4 Weighted log-rank test: the G ,zγ family
111(1)
4.1.5 Weighted log-rank test: significance testing
112(5)
4.1.6 It solution
117(6)
4.1.7 SAS solution
123(4)
4.2 Sample size calculation
127(1)
4.3 Concluding remarks
128(3)
5 The proportional hazards model
131(48)
5.1 Parametric approaches
132(4)
5.1.1 Maximum likelihood estimation
132(1)
5.1.2 R solution
132(3)
5.1.3 SAS solution
135(1)
5.2 Towards semiparametric approaches
136(13)
5.2.1 Piecewise exponential baseline survival model
137(4)
5.2.1.1 Model description and estimation
137(1)
5.2.1.2 Ft solution
138(2)
5.2.1.3 SAS solution
140(1)
5.2.2 SemiNonParametric approach
141(3)
5.2.2.1 Model description and estimation
141(1)
5.2.2.2 SAS solution
142(2)
5.2.3 Spline-based smoothing approaches
144(5)
5.2.3.1 Two spline-based smoothing approaches
144(2)
5.2.3.2 R solution
146(1)
5.2.3.3 SAS solution
147(2)
5.3 Semiparametric approaches
149(14)
5.3.1 Finkelstein's approach
149(1)
5.3.2 Farrington's approach
150(3)
5.3.3 Iterative convex minorant algorithm
153(1)
5.3.4 Grouped proportional hazards model
153(1)
5.3.5 Practical applications
154(9)
5.3.5.1 Two examples
154(1)
5.3.5.2 R solution
155(3)
5.3.5.3 SAS solution
158(5)
5.4 Multiple imputation approach
163(7)
5.4.1 Data augmentation algorithm
163(2)
5.4.2 Multiple imputation for interval-censored survival times
165(5)
5.4.2.1 R solution
167(1)
5.4.2.2 SAS solution
168(2)
5.5 Model checking
170(5)
5.5.1 Checking the PH model
170(2)
5.5.2 R solution
172(1)
5.5.3 SAS solution
173(2)
5.6 Sample size calculation
175(1)
5.7 Concluding remarks
175(4)
6 The accelerated failure time model
179(42)
6.1 Parametric model
180(15)
6.1.1 Maximum likelihood estimation
181(6)
6.1.2 R solution
187(6)
6.1.3 SAS solution
193(2)
6.2 Penalized Gaussian mixture model
195(20)
6.2.1 Penalized maximum likelihood estimation
196(8)
6.2.2 R solution
204(11)
6.3 SemiNonParametric approach
215(1)
6.3.1 SAS solution
216(1)
6.4 Model checking
216(1)
6.5 Sample size calculation
216(3)
6.5.1 Computational approach
216(2)
6.5.2 SAS solution
218(1)
6.6 Concluding remarks
219(2)
7 Bivariate survival times
221(32)
7.1 Nonparametric estimation of the bivariate survival function
222(7)
7.1.1 The NPMLE of a bivariate survival function
222(3)
7.1.2 R solution
225(3)
7.1.3 SAS solution
228(1)
7.2 Parametric models
229(3)
7.2.1 Model description and estimation
229(1)
7.2.2 R solution
230(1)
7.2.3 SAS solution
231(1)
7.3 Copula models
232(8)
7.3.1 Background
232(4)
7.3.2 Estimation procedures
236(3)
7.3.3 R solution
239(1)
7.4 Flexible survival models
240(3)
7.4.1 The penalized Gaussian mixture model
240(2)
7.4.2 SAS solution
242(1)
7.5 Estimation of the association parameter
243(7)
7.5.1 Measures of association
244(1)
7.5.2 Estimating measures of association
245(3)
7.5.3 R solution
248(2)
7.5.4 SAS solution
250(1)
7.6 Concluding remarks
250(3)
8 Additional topics
253(28)
8.1 Doubly interval-censored data
254(8)
8.1.1 Background
254(6)
8.1.2 R solution
260(2)
8.2 Regression models for clustered data
262(12)
8.2.1 Frailty models
263(7)
8.2.1.1 R solution
265(3)
8.2.1.2 SAS solution
268(2)
8.2.2 A marginal approach to correlated survival times
270(4)
8.2.2.1 Independence working model
270(1)
8.2.2.2 SAS solution
271(3)
8.3 A biplot for interval-censored data
274(5)
8.3.1 Classical biplot
274(1)
8.3.2 Extension to interval-censored observations
275(3)
8.3.3 R solution
278(1)
8.4 Concluding remarks
279(2)
III Bayesian methods for interval-censored data 281(186)
9 Bayesian concepts
283(42)
9.1 Bayesian inference
284(11)
9.1.1 Parametric versus nonparametric Bayesian approaches
285(1)
9.1.2 Bayesian data augmentation
285(2)
9.1.3 Markov chain Monte Carlo
287(2)
9.1.4 Credible regions and contour probabilities
289(2)
9.1.5 Selecting and checking the model
291(4)
9.1.6 Sensitivity analysis
295(1)
9.2 Nonparametric Bayesian. inference
295(7)
9.2.1 Bayesian nonparametric modelling of the hazard function
297(2)
9.2.2 Bayesian nonparametric modelling of the distribution function
299(3)
9.3 Bayesian software
302(4)
9.3.1 WinBUGS and OpenBUGS
302(1)
9.3.2 JAGS
303(3)
9.3.3 R software
306(1)
9.3.4 SAS procedures
306(1)
9.3.5 Stan software
306(1)
9.4 Applications for right-censored data
306(17)
9.4.1 Parametric models
307(9)
9.4.1.1 BUGS solution
308(7)
9.4.1.2 SAS solution
315(1)
9.4.2 Nonparametric Bayesian estimation of a survival curve
316(2)
9.4.2.1 R solution
317(1)
9.4.3 Semiparametric Bayesian survival analysis
318(7)
9.4.3.1 BUGS solution
321(2)
9.5 Concluding remarks
323(2)
10 Bayesian estimation of the survival distribution for interval-censored observations
325(30)
10.1 Bayesian parametric modelling
325(10)
10.1.1 JAGS solution
326(5)
10.1.2 SAS solution
331(4)
10.2 Bayesian smoothing methods
335(8)
10.2.1 Classical Gaussian mixture
335(8)
10.2.1.1 R solution
339(4)
10.2.2 Penalized Gaussian mixture
343(1)
10.3 Nonparametric Bayesian estimation
343(10)
10.3.1 The Dirichlet Process prior approach
343(4)
10.3.1.1 R solution
345(2)
10.3.2 The Dirichlet Process Mixture approach
347(8)
10.3.2.1 R solution
348(5)
10.4 Concluding remarks
353(2)
11 The Bayesian proportional hazards model
355(26)
11.1 Parametric PH model
355(13)
11.1.1 JAGS solution
356(9)
11.1.2 SAS solution
365(3)
11.2 PH model with flexible baseline hazard
368(12)
11.2.1 Bayesian PH model with a smooth baseline hazard
368(4)
11.2.1.1 R solution
369(3)
11.2.2 PH model with piecewise constant baseline hazard
372(9)
11.2.2.1 R solution
376(4)
11.3 Semiparametric PH model
380(1)
11.4 Concluding remarks
380(1)
12 The Bayesian accelerated failure time model
381(42)
12.1 Bayesian parametric AFT model
381(8)
12.1.1 JAGS solution
384(3)
12.1.2 SAS solution
387(2)
12.2 AFT model with a classical Gaussian mixture as an error distribution
389(14)
12.2.1 R solution
395(8)
12.3 AFT model with a penalized Gaussian mixture as an error distribution
403(9)
12.3.1 R solution
408(4)
12.4 Bayesian semiparametric AFT model
412(9)
12.4.1 R solution
418(3)
12.5 Concluding remarks
421(2)
13 Additional topics
423(44)
13.1 Hierarchical models
424(16)
13.1.1 Parametric shared frailty models
424(6)
13.1.1.1 JAGS solution
426(3)
13.1.1.2 SAS solution
429(1)
13.1.2 Flexible shared frailty models
430(10)
13.1.2.1 R solution
436(4)
13.1.3 Semiparametric shared frailty models
440(1)
13.2 Multivariate models
440(17)
13.2.1 Parametric bivariate models
440(4)
13.2.1.1 JAGS solution
441(2)
13.2.1.2 SAS solution
443(1)
13.2.2 Bivariate copula models
444(1)
13.2.3 Flexible bivariate models
445(6)
13.2.3.1 R solution
448(3)
13.2.4 Semiparametric bivariate models
451(4)
13.2.4.1 R solution
451(4)
13.2.5 Multivariate case
455(2)
13.3 Doubly interval censoring
457(9)
13.3.1 Parametric modelling of univariate DI-censored data
457(4)
13.3.1.1 JAGS solution
458(3)
13.3.2 Flexible modelling of univariate DI-censored data
461(2)
13.3.2.1 R solution
462(1)
13.3.3 Semiparametric modelling of univariate DI-censored data
463(2)
13.3.3.1 R solution
465(1)
13.3.4 Modelling of multivariate DI-censored data
465(1)
13.4 Concluding remarks
466(1)
IV Concluding remarks 467(14)
14 Omitted topics and outlook
469(12)
14.1 Omitted topics
469(9)
14.1.1 Competing risks and multistate models
470(1)
14.1.2 Survival models with a cured subgroup
471(1)
14.1.3 Multilevel models
472(1)
14.1.4 Informative censoring
472(2)
14.1.5 Interval-censored covariates
474(1)
14.1.6 Joint longitudinal and survival models
475(2)
14.1.7 Spatial-temporal models
477(1)
14.1.8 Time points measured with error
477(1)
14.1.9 Quantile regression
478(1)
14.2 Outlook
478(3)
V Appendices 481(66)
A Data sets
483(6)
A.1 Homograft study
483(1)
A.2 AIDS clinical trial
483(2)
A.3 Survey on mobile phone purchases
485(1)
A.4 Mastitis study
485(1)
A.5 Signal Tandmobiel study
486(3)
B Distributions
489(12)
B.1 Log-normal LAr(γ, α)
490(1)
B.2 Log-logistic LG(γ, α)
490(1)
B.3 Weibull W(γ, α)
491(1)
B.4 Exponential E(α)
492(1)
B.5 Rayleigh R(α)
492(1)
B.6 Gamma(γ, α)
493(1)
B.7 R solution
493(3)
B.8 SAS solution
496(1)
B.9 BUGS solution
496(1)
B.10 R and BUGS parametrization
497(4)
C Prior distributions
501(10)
C.1 Beta prior: Beta(α1, α2)
502(1)
C.2 Dirichlet prior: Dir(α)
503(1)
C.3 Gamma prior: G(α, β)
504(1)
C.4 Inverse gamma prior: IG(α, β)
505(1)
C.5 Wishart prior: Wishart(R, k)
506(1)
C.6 Inverse Wishart prior: Wishart(R, k)
507(1)
C.7 Link between Beta, Dirichlet and Dirichlet Process prior
508(3)
D Description of selected R packages
511(14)
D.1 icensBKL package
511(1)
D.2 Icens package
512(1)
D.3 interval package
513(2)
D.4 survival package
515(1)
D.5 logspline package
516(1)
D.6 smoothSury package
517(1)
D.7 mixAK package
518(1)
D.8 bayesSury package
519(3)
D.9 DPpackage package
522(1)
D.10 Other packages
523(2)
E Description of selected SAS procedures
525(10)
E.1 PROC LIFEREG
525(2)
E.2 PROC Reliability
527(1)
E.3 PROC ICLIFETEST
527(3)
E.4 PROC ICPHREG
530(5)
F Technical details
535(12)
F.1 Iterative Convex Minorant (ICM) algorithm
535(1)
F.2 Regions of possible support for bivariate interval-censored data
536(3)
F.2.1 Algorithm of Gentleman and Vandal (2001)
536(1)
F.2.2 Algorithm of Bogaerts and Lesaffre (2004)
537(1)
F.2.3 Height map algorithm of Maathuis (2005)
538(1)
F.3 Splines
539(8)
F.3.1 Polynomial fitting
540(1)
F.3.2 Polynomial splines
540(1)
F.3.3 Natural cubic splines
541(1)
F.3.4 Truncated power series
541(1)
F.3.5 B-splines
541(2)
F.3.6 M-splines and I-splines
543(1)
F.3.7 Penalized splines (P-splines)
543(4)
References 547(21)
Author Index 568(9)
Subject Index 577
Kris Bogaerts, Arnost Komarek and Emmauel Lesaffre