Muutke küpsiste eelistusi

Sustainable Practices for Landfill Design and Operation 1st ed. 2015 [Kõva köide]

  • Formaat: Hardback, 472 pages, kõrgus x laius: 235x155 mm, kaal: 9463 g, 118 Illustrations, color; 154 Illustrations, black and white; XIX, 472 p. 272 illus., 118 illus. in color., 1 Hardback
  • Sari: Waste Management Principles and Practice
  • Ilmumisaeg: 21-Jul-2015
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 1493926616
  • ISBN-13: 9781493926619
Teised raamatud teemal:
  • Kõva köide
  • Hind: 159,88 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 188,09 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 472 pages, kõrgus x laius: 235x155 mm, kaal: 9463 g, 118 Illustrations, color; 154 Illustrations, black and white; XIX, 472 p. 272 illus., 118 illus. in color., 1 Hardback
  • Sari: Waste Management Principles and Practice
  • Ilmumisaeg: 21-Jul-2015
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 1493926616
  • ISBN-13: 9781493926619
Teised raamatud teemal:
The EPA-funded study of bioreactor landfills resulted in a set of recommended approaches for bioreactor landfill design. Combining the information resulting from this effort with the other information my co-authors and I have developed in our research and consulting activities, the book will represent set of recommendations for the development, design, operation and monitoring of bioreactor landfills, which treat waste in a more sustainable, environmentally friendly, and economical fashion than conventional landfills. Bioreactor Landfills offers waste management professionals and researchers comprehensive analysis of the emerging field of bioreactor landfills. While some countries are moving away from traditional landfills (e.g., Germany, Japan), landfilling remains the primary method of waste management in many parts of the world. Solid waste is a global concern, and it is recognized that conventional landfill technologies are less than desirable as a long-term waste management strategy. Technologies have been proposed and implemented to operate landfills in a more environmentally friendly and sustainable manner. These technologies are treatment systems, not just disposal systems. This book provides state-of-the-art design and operation concepts and technologies for operating these systems.
1 The Landfill's Role in Sustainable Waste Management
1(12)
1.1 Sustainability and Waste Management
1(2)
1.2 Non-sustainable Landfilling Practices
3(2)
1.3 The Evolution of Modern Landfills
5(3)
1.4 Transition from Landfill Disposal to Treatment
8(1)
1.5 Practices and Technologies for More Sustainable Landfilling
9(2)
1.6 Scope and Organization of Book
11(2)
References
12(1)
2 Waste and Landfill Fundamentals
13(22)
2.1 The Solid Waste Universe
13(2)
2.2 Landfill Components
15(10)
2.2.1 Foundation and Liner
16(4)
2.2.2 Leachate Collection, Removal and Treatment
20(2)
2.2.3 Landfill Gas Control
22(2)
2.2.4 Landfill Closure
24(1)
2.3 Landfill Operation
25(3)
2.4 Waste Stabilization Processes
28(3)
2.5 Landfill Bioreactor Fundamentals
31(4)
References
33(2)
3 Planning for Sustainable Landfilling Practices
35(18)
3.1 The Importance of Planning
35(1)
3.2 Defining Project Objectives
36(1)
3.3 Regulatory Constraints and Considerations
37(2)
3.3.1 U.S. Regulations
37(2)
3.3.2 European Union Regulations
39(1)
3.4 Engineering Design Considerations
39(6)
3.4.1 Design Differences with Sustainable Landfill Practices
39(2)
3.4.2 Liquids Management
41(2)
3.4.3 Managing Landfill Gas
43(1)
3.4.4 Other Design Considerations for Sustainable Landfills
44(1)
3.5 Operation and Monitoring
45(1)
3.6 Closure and Aftercare
46(1)
3.7 Economic Considerations
47(1)
3.8 Life-Cycle and Sustainability Considerations
48(5)
References
50(3)
4 State of Practice
53(40)
4.1 The Evolution of Sustainable Landfill Research and Application
53(3)
4.2 Full-Scale Case Studies: North America
56(28)
4.2.1 Delaware Solid Waste Authority
56(1)
4.2.2 Alachua County Southwest Landfill
57(5)
4.2.3 Yolo County Landfill
62(4)
4.2.4 New River Regional Landfill
66(7)
4.2.5 Crow Wing County Landfill
73(2)
4.2.6 Polk County North Central Landfill
75(5)
4.2.7 Outer Loop Landfill
80(4)
4.3 International Experience
84(9)
4.3.1 Europe
84(2)
4.3.2 Asia
86(1)
4.3.3 Australia
87(1)
References
88(5)
5 Landfill Constituent Relationships and Dynamics
93(40)
5.1 Landfill Components and Their Movement
93(1)
5.2 Fundamental Properties of Landfill Waste
94(9)
5.2.1 Phase Relationships
94(1)
5.2.2 Density
94(4)
5.2.3 Porosity
98(1)
5.2.4 Moisture Content
99(4)
5.3 Moisture Movement
103(14)
5.3.1 Saturated Flow and Hydraulic Conductivity
104(3)
5.3.2 Unsaturated Flow
107(3)
5.3.3 Predicting Moisture Movement
110(3)
5.3.4 Dominant Factors Controlling Leachate Flow
113(4)
5.4 Gas and Air Movement
117(3)
5.4.1 Production of Landfill Gas
118(1)
5.4.2 Gas Movement in Landfill Waste
118(2)
5.5 Solids Movement
120(6)
5.5.1 Waste Settlement
120(3)
5.5.2 Landfill Movement
123(3)
5.6 Multiphase Dynamics
126(7)
References
127(6)
6 Moisture Supply and Conveyance
133(18)
6.1 Designing for Moisture Addition
133(1)
6.2 Moisture Sources
134(5)
6.2.1 Options for Moisture Sources
134(1)
6.2.2 Leachate
134(2)
6.2.3 Stormwater and Groundwater
136(1)
6.2.4 Wastewater and Spent Aqueous Products
137(1)
6.2.5 Wet Wastes and Biosolids
138(1)
6.3 Moisture Addition Targets
139(3)
6.3.1 Establishing Moisture Addition Requirements
139(2)
6.3.2 Determining Moisture Addition Rates
141(1)
6.4 Conveyance Systems for Liquids Addition
142(6)
6.5 Addition of Wet Wastes
148(3)
References
150(1)
7 Systems for Surface Addition of Liquids
151(14)
7.1 Surface System Fundamentals
151(1)
7.2 Surface System Configuration
152(7)
7.2.1 Tanker Truck Application
152(2)
7.2.2 Spray Application
154(1)
7.2.3 Drip Irrigation
155(1)
7.2.4 Surface Ponding
156(2)
7.2.5 Surface Trenches
158(1)
7.3 Design Methodology
159(6)
7.3.1 Direct Wetting, Spray and Drip Irrigation
160(1)
7.3.2 Surface Ponding
161(1)
7.3.3 Surface Trenches
162(1)
References
163(2)
8 Buried Vertical Systems for Liquids Addition
165(24)
8.1 Vertical Well Fundamentals
165(1)
8.2 Configuration, Construction and Materials
166(8)
8.2.1 Construction Techniques
166(3)
8.2.2 Large Diameter Surface Wells
169(1)
8.2.3 Small Diameter Surface Wells
170(4)
8.3 Design Methodology
174(2)
8.4 Flow Rates
176(4)
8.4.1 Operational Experience
176(1)
8.4.2 Estimation Methods
177(3)
8.5 Saturated Zone Profiles
180(1)
8.6 Liquids Addition Device Spacing
181(2)
8.7 Operation, Monitoring and Closure
183(6)
References
187(2)
9 Buried Horizontal Systems for Liquids Addition
189(32)
9.1 Subsurface Horizontal System Fundamentals
189(1)
9.2 Configuration, Construction and Materials
190(12)
9.2.1 Buried Trenches
190(10)
9.2.2 Blankets
200(2)
9.2.3 Combined Systems
202(1)
9.3 Design Methodology
202(6)
9.4 Flow Rates
208(4)
9.4.1 Operational Experience
208(2)
9.4.2 Flow Estimation Methods
210(2)
9.5 Saturated Zone Profiles
212(1)
9.6 Device Spacing
213(5)
9.7 Operation, Monitoring and Closure
218(3)
References
219(2)
10 Leachate Collection and Removal Systems (LCRS)
221(22)
10.1 Leachate Removal Fundamentals
221(3)
10.2 Predicting Leachate Impingement
224(6)
10.2.1 Impingement Basics
224(1)
10.2.2 Prediction Using HELP
225(3)
10.2.3 Impingement Prediction for Specific Liquids Addition Methods
228(2)
10.3 Predicting Leachate Head on Liner
230(4)
10.3.1 Single Layer Granular System
230(2)
10.3.2 Single Layer Geonet System
232(1)
10.3.3 Multi-Layered System
233(1)
10.4 Foundation Settlement Considerations
234(4)
10.5 LCRS Clogging
238(5)
10.5.1 Clogging Mechanisms
238(1)
10.5.2 Clogging Potential in Sustainable Landfill Operations
239(1)
10.5.3 Addressing Clogging in Design
240(1)
10.5.4 Addressing Clogging in Operation
240(1)
References
241(2)
11 Leachate Control, Storage, and Treatment
243(24)
11.1 Leachate Management Fundamentals
243(1)
11.2 Controlling Stormwater Run-on and Runoff
244(1)
11.3 Managing Leachate Seeps
245(10)
11.3.1 Seep Formation
247(3)
11.3.2 Seep Prevention Strategies
250(4)
11.3.3 Seep Management Strategies
254(1)
11.4 Leachate Storage
255(3)
11.5 Leachate Treatment
258(9)
11.5.1 Conventional Leachate Treatment Processes
260(3)
11.5.2 Leachate Treatment Considerations for Sustainable Landfill Operations
263(2)
References
265(2)
12 Slope Stability
267(14)
12.1 Landfill Slope Stability
267(1)
12.2 Slope Stability Fundamentals
268(3)
12.3 Methods for Assessing Slope Stability
271(3)
12.4 Examining Slope Failure Mechanisms at Wet Landfills
274(4)
12.5 Design Recommendations for Slope Setback Distance
278(3)
References
280(1)
13 Landfill Gas
281(32)
13.1 Importance of Gas Collection in Sustainable Landfill Operation
281(2)
13.2 LFG Generation, Control, and Design fundamentals
283(6)
13.2.1 GCCS Basics
283(4)
13.2.2 Prediction of LFG Generation
287(2)
13.3 Design and Operation Challenges
289(5)
13.3.1 Accelerated Gas Production
289(5)
13.3.2 Issues with Increased Moisture
294(1)
13.4 LFG Regulations for Bioreactor Landfills
294(2)
13.5 Design and Operation Strategies
296(17)
13.5.1 Impacts on GCCS Infrastructure
298(1)
13.5.2 Design Considerations for Vertical Wells
298(1)
13.5.3 Design Strategies Using Horizontal Collectors
299(1)
13.5.4 Integrating LCRS Into GCCS Design
300(5)
13.5.5 Surface Gas Collection Systems
305(1)
13.5.6 Downward Collection Systems
306(1)
13.5.7 Delayed Liquids Addition
307(2)
13.5.8 Methane Oxidation
309(1)
References
310(3)
14 Landfill Air Addition
313(32)
14.1 The Role of Air Addition in Landfill Operation
313(1)
14.2 Achieving Benefits from Air Addition
314(6)
14.3 Air Addition System Configuration and Design
320(7)
14.3.1 Design Objectives
321(1)
14.3.2 Air Addition Rate
321(4)
14.3.3 Air Addition System Infrastructure
325(2)
14.4 Operation, Monitoring and Control
327(6)
14.4.1 Operation
327(3)
14.4.2 Explosive Gas Control
330(1)
14.4.3 Fire Prevention and Control
331(2)
14.4.4 Control of Fugitive Emissions
333(1)
14.5 Air Addition Experience
333(12)
14.5.1 Asia
333(3)
14.5.2 Europe
336(1)
14.5.3 North America
337(4)
References
341(4)
15 Operations
345(16)
15.1 Importance of Operations
345(1)
15.2 Operator Duties and Expectations
346(1)
15.3 The Operations Plan
347(1)
15.4 Construction, Oversight, and Recordkeeping
347(3)
15.5 Liquids Addition Operation and Monitoring
350(5)
15.5.1 Liquids Addition Operation
350(2)
15.5.2 Tracking the Liquid Balance
352(2)
15.5.3 Inspection
354(1)
15.6 Gas and Air System Operation and Monitoring
355(1)
15.7 Monitoring System Performance
356(5)
References
359(2)
16 Tools and Techniques for Landfill Monitoring
361(36)
16.1 Monitoring Locations and Parameters
361(2)
16.2 Liquid Volume, Depth, and Pressure
363(1)
16.3 Leachate Chemical Composition
364(7)
16.3.1 Sample Collection and Field Parameter Measurement
366(1)
16.3.2 Organic Strength Measurements
367(2)
16.3.3 Inorganic Strength Measurements
369(1)
16.3.4 Nutrient Analysis
370(1)
16.3.5 Trace Constituent Analysis
371(1)
16.4 Gas Volume, Pressure, and Flux
371(4)
16.4.1 Flow Rate and Pressure
372(1)
16.4.2 Surface Emissions
373(2)
16.5 Chemical Composition of Gas
375(2)
16.5.1 Bulk LFG Constituents
375(1)
16.5.2 Trace Constituents
376(1)
16.6 Landfill Volume, Density, and Topography
377(4)
16.6.1 Surface Topography
377(1)
16.6.2 Density (Specific Weight) Estimation
378(1)
16.6.3 Settlement Measurement Techniques
378(2)
16.6.4 Slope Measurements
380(1)
16.7 Excavated Solids Properties
381(4)
16.7.1 Solids Collection Techniques
382(1)
16.7.2 Solids Analytical Procedures
383(2)
16.8 In Situ Moisture, Temperature, and Pressure
385(12)
16.8.1 Temperature Measurement
385(2)
16.8.2 Moisture Measurement Techniques
387(3)
16.8.3 In Situ Pressure Measurement
390(3)
References
393(4)
17 Final Landfill Disposition
397(28)
17.1 End of Life Considerations
397(1)
17.2 Elements of the Closure and Post-closure Process
398(4)
17.2.1 Closure System Design
398(2)
17.2.2 Planning Consideration for Closure and Post-closure
400(2)
17.3 Closure Considerations for Sustainable Landfills
402(6)
17.3.1 Waste Filling
402(2)
17.3.2 Alternative Cover Systems
404(2)
17.3.3 Leachate and Gas Management
406(2)
17.4 Determination of End of Post-closure Care
408(2)
17.5 Landfill Reclamation and Reuse
410(11)
17.5.1 Landfill Reclamation Fundamentals
410(2)
17.5.2 The Reclamation Process
412(6)
17.5.3 Design, Permitting, and Operation of Reclamation Projects
418(1)
17.5.4 Reclaimed Material Composition
419(2)
17.6 Final Site Use and Configuration
421(4)
References
422(3)
18 Economics
425(18)
18.1 Overview
425(1)
18.2 Fundamentals of Landfill Economics
426(6)
18.2.1 Cost Elements
426(4)
18.2.2 Revenue Sources
430(1)
18.2.3 Financial Assurance
431(1)
18.2.4 Economy of Scale
432(1)
18.3 Costs and Benefits of Sustainable Landfill Practices
432(6)
18.3.1 Liquids Management
433(1)
18.3.2 Gas Management
434(1)
18.3.3 Air Space Recovery
435(2)
18.3.4 Social Costs
437(1)
18.4 Costs and Benefits After Landfill Closure
438(5)
18.4.1 Post Closure Care Costs
438(1)
18.4.2 Landfill Reclamation
439(1)
References
440(3)
19 The Role of Landfills in Integrated Materials and Energy Recovery Facilities
443(18)
19.1 Landfills, Energy, and Resource Recovery
443(1)
19.2 The Role of Landfills in Integrated Waste Management
444(2)
19.3 Beneficial Use of LFG
446(4)
19.3.1 Electricity Generation
446(2)
19.3.2 Medium Energy Content Applications
448(1)
19.3.3 High Energy Content Applications
448(2)
19.4 Additional Energy Opportunities
450(4)
19.4.1 Solar Power at Sustainable Landfills
451(3)
19.5 Wind Power at Sustainable Landfills
454(3)
19.6 Landfills as Waste Treatment and Materials Recovery Operations
457(4)
References
460(1)
Index 461