Muutke küpsiste eelistusi

Swarm Intelligence Based Optimization: Second International Conference, ICSIBO 2016, Mulhouse, France, June 13-14, 2016, Revised Selected Papers 1st ed. 2016 [Pehme köide]

Edited by , Edited by , Edited by
  • Formaat: Paperback / softback, 125 pages, kõrgus x laius: 235x155 mm, kaal: 2175 g, 56 Illustrations, black and white; IX, 125 p. 56 illus., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 10103
  • Ilmumisaeg: 25-Nov-2016
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319503065
  • ISBN-13: 9783319503066
Teised raamatud teemal:
  • Pehme köide
  • Hind: 41,29 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 48,58 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 125 pages, kõrgus x laius: 235x155 mm, kaal: 2175 g, 56 Illustrations, black and white; IX, 125 p. 56 illus., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 10103
  • Ilmumisaeg: 25-Nov-2016
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319503065
  • ISBN-13: 9783319503066
Teised raamatud teemal:

This book constitutes the thoroughly refereed post-conference proceedings of the Second International Conference on Swarm Intelligence Based Optimization, ICSIBO 2016, held in Mulhouse, France, in June 2016. The 9 full papers presented were carefully reviewed and selected from 20 submissions. They are centered around the following topics: theoretical advances of swarm intelligence metaheuristics; combinatorial discrete, binary, constrained, multi-objective, multi-modal, dynamic, noisy, and large scale optimization; artificial immune systems,  particle swarms, ant colony, bacterial forging, artificial bees, fireflies algorithm; hybridization of algorithms; parallel/distributed computing, machine learning, data mining, data clustering, decision making and multi-agent systems based on swarm intelligence principles; adaptation and applications of swarm intelligence principles to real world problems in various domains.

Theoretical advances of swarm intelligence metaheuristics.-
Combinatorial discrete, binary, constrained, multi-objective, multi-modal,
dynamic, noisy, and large scale optimization.- Artificial immune
systems, particle swarms, ant colony, bacterial forging, artificial bees,
fireflies algorithm.- Hybridization of algorithms.- Parallel/distributed
computing, machine learning, data mining, data clustering, decision making
and multi-agent systems based on swarm intelligence principles.- Adaptation
and applications of swarm intelligence principles to real world problems in
various domains.