Muutke küpsiste eelistusi

Synthetic Aperture Radar Processing [Kõva köide]

(IREA-CNR, Italy), (University Federico II, Napoli, Italy)
  • Formaat: Hardback, 322 pages, kõrgus x laius: 234x156 mm, kaal: 585 g, 8 Tables, black and white; 29 Halftones, black and white
  • Ilmumisaeg: 30-Mar-1999
  • Kirjastus: CRC Press Inc
  • ISBN-10: 0849378990
  • ISBN-13: 9780849378997
Teised raamatud teemal:
  • Formaat: Hardback, 322 pages, kõrgus x laius: 234x156 mm, kaal: 585 g, 8 Tables, black and white; 29 Halftones, black and white
  • Ilmumisaeg: 30-Mar-1999
  • Kirjastus: CRC Press Inc
  • ISBN-10: 0849378990
  • ISBN-13: 9780849378997
Teised raamatud teemal:
A resource for scientists and engineers working in radar or remote sensing, and suitable for a one-semester course on synthetic aperture radar systems. Presents the processing algorithms that form the basis of such operations, and that are implemented in numerical codes that transform the apparent meaningless received raw data into meaningful two-dimensional and three-dimensional images of the exploited scene. Allows the emphasis of study to be any of the systems, their technological features, their practical uses, applications, or the fundamental principles of processing philosophy or of operational modes. Annotation c. Book News, Inc., Portland, OR (booknews.com)

Synthetic Aperture Radar Processing simply and methodically presents principles and techniques of Synthetic Aperture Radar (SAR) image generation by analyzing its system transfer function. The text considers the full array of operation modes from strip to scan, emphasizes processing techniques, enabling the design of operational SAR codes. A simple example then follows.
This book will be invaluable to all SAR scientists and engineers working in the field. It may be used as the basis for a course on SAR image generation or as a reference book on remote sensing. It contains a wide spectrum of information presented with clarity and rigor.
Fundamentals
Introduction
1(3)
Historical Background
4(5)
Synthetic Aperture Radar System Modes
9(4)
Geometric Resolution
13(24)
Range
15(9)
Azimuth
24(6)
Unfocused Azimuth Processing
30(1)
Doppler Viewpoint
30(1)
Slant Altitude
31(6)
Geometric Distortions
37(5)
Synthetic Aperture Radar Signal Statistics
42(8)
The Radar Cross Section
47(3)
Interferometric Synthetic Aperture Radar Phase Statistics
50(3)
Slant Altitude Resolution
51(2)
Radiometric Resolution
53(3)
Ambiguity Considerations
56(3)
Power And Noise Considerations
59(4)
Radiometric Calibration Issues
62(1)
Summary
63(1)
Appendix: Coding Issues
64(1)
References
65(8)
Strip Mode Transfer Function
Signal Analysis in Time Domain
73(5)
Synthetic Aperture Radar Transfer Function
78(10)
Transfer Function Asymptotic Evaluation
81(7)
Squinted Geometry
88(6)
Earth Rotation and Sensor Orbit Effects
94(4)
Reflective Pattern
98(3)
Summary
101(1)
Appendix: Stationary Phase Method
102(1)
References
103(2)
Strip Mode Data Processing
Point Target Response
105(9)
Point Target Response Quality Enhancement
112(2)
Synthetic Aperture Radar Transfer Function and Its Approximations
114(4)
Narrow Focus Synthetic Aperture Radar Processing
118(7)
Narrow Focus Processing Aberrations
119(6)
Wide Focus Synthetic Aperture Radar Processing
125(3)
Efficient Wide Focus Synthetic Aperture Radar Processing
128(10)
Processing Via Chirp Scaling
130(3)
Chirp Scaling Improvement
133(3)
Processing Via Chirp z-Transform
136(2)
Range-Doppler Synthetic Aperture Radar Processing
138(3)
Motion Compensation
141(4)
Multiple Look Synthetic Aperture Radar Image Generation
145(6)
Estimation Procedures for Synthetic Aperture Radar Parameters
151(12)
Autofocus
152(3)
Central Azimuth Frequency Determination
155(3)
Central Azimuth Frequency Ambiguity Resolution
158(5)
Summary
163(1)
Appendix: Extension to the Squinted Case of Transfer Function
164(1)
Phase Expansion
164(1)
References
165(2)
Synthetic Aperture Radar Interferometry
Introduction
167(4)
Stereometric System
167(3)
Interferometric System
170(1)
Interferometric Synthetic Aperture Radar Processing
171(2)
Interferometric Phase Noise
173(4)
Image Registration Techniques
177(8)
Image Preregistration
180(5)
Interferometric Phase Statistics
185(3)
Decorrelation Effects
188(7)
Misregistration Decorrelation
192(1)
Spatial Decorrelation
192(1)
Doppler Centroid Decorrelation
193(2)
Temporal Decorrelation
195(1)
Digital Elevation Model Accuracy
195(2)
Phase Unwrapping
197(9)
Local Integration Phase Unwrapping Techniques
200(1)
Green's Identity Phase Unwrapping Technique
201(2)
Global Integration Phase Unwrapping Techniques
203(2)
Connection Between Local and Global Phase Unwrapping Techniques
205(1)
Weighted Phase Unwrapping Via Finite Element Method
206(8)
Noise role in Global Phase Unwrapping Techniques
211(3)
Geocoding
214(4)
Differential Interferometric Synthetic Aperture Radar
218(4)
Summary
222(1)
References
222(3)
Scan Mode Signal Analysis and Data Processing
Time Domain Analysis
225(7)
Frequency Domain Analysis
232(3)
Point Target Image Generation
235(8)
Scan and Strip Modes Compared
240(3)
Scan Mode Data Processing
243(12)
Efficient Burst Image Generation
246(9)
Summary
255(1)
Appendix: Refined Azimuth Processing of a Point Target
255(1)
References
256(3)
Spot Mode Signal Analysis and Data Processing
Time Domain Analysis
259(5)
Frequency Domain Analysis
264(3)
Bandwidth Considerations
267(5)
Deramping Techniques
268(3)
Azimuth Bandwidth
271(1)
Residual Video Phase Compensation
272(2)
Spot Mode Image Generation
274(8)
Spot Mode Image Generation via Strip Mode Processing
274(8)
Summary
282(2)
References
284(1)
Processing Code Example
Code Presentation
285(1)
Processing Code
286(4)
Example
290(3)
Summary
293(2)
Index 295
Giorgio Franceschetti, Riccardo Lanari, Giorgio Franceschetti, Riccardo Lanari