Muutke küpsiste eelistusi

TCP Performance over UMTS-HSDPA Systems [Kõva köide]

  • Formaat: Hardback, 211 pages, kõrgus x laius: 234x156 mm, kaal: 453 g
  • Ilmumisaeg: 20-Jul-2006
  • Kirjastus: Auerbach
  • ISBN-10: 0849368383
  • ISBN-13: 9780849368387
  • Formaat: Hardback, 211 pages, kõrgus x laius: 234x156 mm, kaal: 453 g
  • Ilmumisaeg: 20-Jul-2006
  • Kirjastus: Auerbach
  • ISBN-10: 0849368383
  • ISBN-13: 9780849368387
The evolution of the mobile communication market is causing a major increase in data traffic demands. This could lead to disrupted mobility and intermittent degraded channel conditions that contribute to poor transmission control protocol (TCP) performance. TCP Performance over UMTS-HSDPA Systems presents a comprehensive study of the effect of TCP on achieved application bit rate performance and system capacity, and shows how to reduce the interaction of wireless networks on TCP with minimal cost.

With self-contained chapters, the book consists of two main sections. The first several chapters provide background and describe the state of the art for wireless networks, emphasizing one of the third-generation (3G) wireless technologies: the universal mobile telecommunications system (UMTS). These chapters also include an analysis of the overall cell capacity for UMTS Release 99 and high-speed downlink packet access (HSDPA) systems. The second section focuses on the interaction of TCP with wireless systems, presenting an exhaustive list of TCP versions and link layer solutions that adapt TCP (often modifying the original TCP) to a wireless network. This section also displays mathematical modeling of the interaction of hybrid automatic repeat request (HARQ) and TCP in UMTS networks.

While offering information for advanced undergraduate students who are unfamiliar with code division multiple access (CDMA) wireless systems as well as UMTS and HSDPA cellular systems, the book also provides extensive coverage of "TCP over wireless systems" problems and solutions for researchers, developers, and graduate students.
The Authors xiii
Preface xv
1 Wireless Radio Channel 1(12)
1.1 Large-Scale Fading Models
4(3)
1.1.1 Path Loss Models for UMTS
4(3)
1.1.1.1 Path Loss Model for Indoor Office Environment
5(1)
1.1.1.2 Path Loss Model for Urban and Suburban Environment
5(1)
1.1.1.3 Path Loss Model for Outdoor to Indoor and Pedestrian Environment
6(1)
1.2 Small-Scale Fading Characterization and Channel Model
7(5)
1.2.1 Statistics of the Received Signal Envelope
8(2)
1.2.2 Characterization of the Radio Channel Response
10(2)
References
12(1)
2 CDMA in Cellular Systems 13(12)
2.1 CDMA Principle
13(2)
2.2 Benefits of CDMA
15(2)
2.3 CDMA Codes
17(5)
2.3.1 Orthogonal Codes
17(2)
2.3.2 Scrambling Code
19(9)
2.3.2.1 Scrambling Codes of UMTS Uplink Channels
20(1)
2.3.2.2 Scrambling Codes of UMTS Downlink Channels
21(1)
2.4 CDMA Receiver
22(2)
References
24(1)
3 Universal Mobile for Telecommunications System 25(52)
3.1 UMTS Services
28(4)
3.1.1 Conversational Class Applications
28(1)
3.1.2 Streaming Class Applications
29(1)
3.1.3 Interactive Class Applications
30(1)
3.1.4 Background Class Applications
31(1)
3.1.5 Quality of Service (QoS) Parameters
31(1)
3.2 General Architecture
32(5)
3.2.1 User Equipment Domain
33(1)
3.2.2 UTRAN Domain
33(1)
3.2.3 Core Network Domain
34(1)
3.2.4 Interfaces
35(3)
3.2.4.1 Iu Interface
35(1)
3.2.4.2 Iur Interface
36(1)
3.2.4.3 Iub Interface
37(1)
3.3 UTRAN Protocol Architecture
37(1)
3.4 UMTS Channels
38(8)
3.4.1 Logical Channels
38(1)
3.4.1.1 Logical Control Channels
38(1)
3.4.2 Transport Channels
39(3)
3.4.3 Physical Channels
42(5)
3.4.3.1 Dedicated Physical Channel
44(2)
3.5 Physical Layer
46(1)
3.6 Medium Access Control
47(6)
3.6.1 MAC Architecture
48(1)
3.6.2 Protocol Data Unit
49(4)
3.7 Radio Link Control
53(6)
3.7.1 Transparent Mode (TM)
54(1)
3.7.2 Unacknowledged Mode (UM)
55(1)
3.7.3 Acknowledged Mode (AM)
56(1)
3.7.4 SDU Discard at the RLC Sender
57(5)
3.7.4.1 Timer-Based Discard with Explicit Signaling
58(1)
3.7.1.2 Timer-Based Discard without Explicit Signaling
58(1)
3.7.4.3 SDU Discard after MaxDAT Transmissions
59(1)
3.7.1.4 No Discard after MaxDAT Transmissions
59(1)
3.8 Packet Data Convergence Protocol (PDCP)
59(1)
3.9 Broadcast/Multicast Control (BMC) and Multimedia Broadcast/Multicast Service (MBMS)
60(1)
3.10 Radio Resource Control (RRC)
61(1)
3.11 Automatic Repeat Request Protocol
62(3)
3.11.1 SW Protocol
63(1)
3.11.2 Sliding Window Protocol
64(1)
3.12 Power Control
65(2)
3.12.1 Open-Loop Power Control
65(1)
3.12.2 Closed-Loop Power Control
66(1)
3.13 Handover
67(2)
3.14 Modeling and Cell Capacity
69(3)
3.14.1 Uplink Capacity
70(1)
3.14.2 Downlink Capacity
71(1)
References
72(5)
4 High-Speed Downlink Packet Access 77(38)
4.1 HSDPA Concept
78(2)
4.2 HSDPA Structure
80(2)
4.3 Channels Structure
82(5)
4.3.1 HS-DSCH Channel
82(1)
4.3.2 HS-SCCH Channel
83(1)
4.3.3 HS-DPCCH Channel
84(2)
4.3.4 Timing of HSDPA Channels
86(1)
4.4 MAC-hs
87(4)
4.4.1 MAC Architecture at the UTRAN Side
88(3)
4.4.2 MAC Architecture at the User Equipment Side
91(1)
4.5 Fast Link Adaptation
91(3)
4.6 Adaptive Modulation and Coding
94(1)
4.7 HARQ
95(6)
4.7.1 HARQ Types
96(1)
4.7.2 HARQ Protocol
97(4)
4.7.3 HARQ Management
101(1)
4.8 Packet Scheduling
101(5)
4.8.1 Scheduling Constraints and Parameters
103(1)
4.8.2 Selected Scheduling Algorithms
104(2)
4.8.2.1 Round Robin
104(1)
4.8.2.2 Fair Throughput
104(1)
4.8.2.3 Max C/I
104(1)
4.8.2.4 Proportional Fair
105(1)
4.9 HSDPA Modeling and Cell Throughput
106(5)
4.9.1 HARQ
106(1)
4.9.2 AMC
106(1)
4.9.3 Scheduling
107(3)
4.9.3.1 Round Robin Scheduler
107(1)
4.9.3.2 Fair Throughput Scheduler
107(1)
4.9.3.3 Max C/I Scheduler
108(1)
4.9.3.4 Proportional Fair Scheduler
109(1)
4.9.4 Results
110(1)
References
111(4)
5 Applications and Transport Control Protocol 115(24)
5.1 UDP Services
116(1)
5.2 TCP Services
116(4)
5.2.1 World Wide Web
118(2)
5.3 TCP
120(10)
5.3.1 Connection Establishment and Termination
120(2)
5.3.2 TCP Segmentation
122(2)
5.3.3 Flow Control and Sliding Window Mechanisms
124(1)
5.3.4 Acknowledgment and Error Detection
125(2)
5.3.5 Congestion Control and Retransmission Mechanism
127(3)
5.3.5.1 Slow Start
127(1)
5.3.5.2 Congestion Avoidance
128(1)
5.3.5.3 Retransmission Timeout
128(1)
5.3.5.4 Triple Duplicate
129(1)
5.4 TCP Modeling
130(5)
5.4.1 Independent Packet Loss Models
130(3)
5.4.2 Random Loss Model
133(1)
5.4.3 Network Model
134(1)
5.4.4 Control System Model
134(1)
References
135(4)
6 TCP over Wireless Systems: Problems and Enhancements 139(38)
6.1 Wireless Environment Factors
140(3)
6.1.1 Limited Bandwidth and Long RTT
140(1)
6.1.2 High Loss Rate
141(1)
6.1.3 Mobility
142(1)
6.1.4 Asymmetric Links Bandwidth
142(1)
6.2 TCP Performance Enhancements
143(26)
6.2.1 Link-Layer Solutions
143(7)
6.2.1.1 Snoop Protocol
144(1)
6.2.1.2 Transport Unaware Link Improvement Protocol (TULIP)
145(1)
6.2.1.3 Delayed Duplicate Acknowledgments
146(1)
6.2.1.4 Scheduling over Reliable Shared Channel
147(2)
6.2.1.5 Other Link-Layer Solutions
149(1)
6.2.2 Split Solutions
150(3)
6.2.2.1 Indirect-TCP
150(1)
6.2.2.2 Mobile-TCP
151(1)
6.2.2.3 Mobile End Transport Protocol (METP)
152(1)
6.2.3 End-to-End Solutions
153(30)
6.2.3.1 TCP SACK
153(1)
6.2.3.2 Forward Acknowledgment
154(1)
6.2.3.3 SMART Retransmissions
154(1)
6.2.3.4 Eiffel
154(1)
6.2.3.5 Explicit Congestion Notification
155(1)
6.2.3.6 Explicit Bad State Notification (EBSN)
156(1)
6.2.3.7 Explicit Loss Notification
157(1)
6.2.3.8 TCP over Wireless Using ICMP Control Messages
158(1)
6.2.3.9 Noncongestion Packet Loss Detection (NCPLD)
158(1)
6.2.3.10 Explicit Transport Error Notification
159(1)
6.2.3.11 Multiple Acknowledgments
159(1)
6.2.3.12 Negative Acknowledgments
160(1)
6.2.3.13 Freeze TCP
160(1)
6.2.3.14 TCP Probing
161(1)
6.2.3.15 Wireless TCP
162(1)
6.2.3.16 TCP Peach
163(1)
6.2.3.17 TCP Vegas
164(1)
6.2.3.18 TCP Santa Cruz
165(1)
6.2.3.19 TCP Westwood
165(1)
6.2.3.20 TCP Veno
166(1)
6.2.3.21 TCP Jersey
166(1)
6.2.3.22 TCP Pacing
167(1)
6.2.3.23 TCP Real
167(1)
6.2.3.24 Ad Hoc TCP
168(1)
References
169(8)
7 TCP Performance over UMTS-HSDPA System 177(22)
7.1 TCP Performance
178(1)
7.2 General Architecture of TCP Connection over UMTS-HSDPA
179(4)
7.3 Comparison among RLC, MAC-hs, and TCP
183(2)
7.3.1 Reliability
183(1)
7.3.2 Flow Control and Sliding Window
184(1)
7.3.3 Segmentation
184(1)
7.4 Modeling of TCP over UMTS-HSDPA
185(8)
7.4.1 Timeout
185(1)
7.4.1.1 Proposition
185(1)
7.4.1.2 Proof
186(1)
7.4.2 Slow Start
186(2)
7.4.3 Recovery Time of the First Loss
188(1)
7.4.4 Steady-State Phase
189(1)
7.4.5 Effect of TCP on Wireless Network
190(3)
7.5 Other Analyses of TCP over UMTS-HSDPA
193(2)
References
195(4)
Index 199


Assaad, Mohamad; Zeghlache, Djamal