Muutke küpsiste eelistusi

Techniques and Environments for Big Data Analysis: Parallel, Cloud, and Grid Computing Softcover reprint of the original 1st ed. 2016 [Pehme köide]

Edited by , Edited by , Edited by , Edited by
  • Formaat: Paperback / softback, 191 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, 76 Illustrations, color; 27 Illustrations, black and white; XI, 191 p. 103 illus., 76 illus. in color., 1 Paperback / softback
  • Sari: Studies in Big Data 17
  • Ilmumisaeg: 30-Mar-2018
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319801600
  • ISBN-13: 9783319801605
Teised raamatud teemal:
  • Pehme köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 191 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, 76 Illustrations, color; 27 Illustrations, black and white; XI, 191 p. 103 illus., 76 illus. in color., 1 Paperback / softback
  • Sari: Studies in Big Data 17
  • Ilmumisaeg: 30-Mar-2018
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319801600
  • ISBN-13: 9783319801605
Teised raamatud teemal:

This volume is aiming at a wide range of readers andresearchers in the area of Big Data by presenting the recent advances in the fieldsof Big Data Analysis, as well as the techniques and tools used to analyze it. The book includes 10 distinct chaptersproviding a concise introduction to Big Data Analysis and recent Techniques and Environments forBig Data Analysis. It gives insightinto how the expensive fitness evaluation of evolutionarylearning can play a vital role in big data analysis by adopting Parallel, Grid, and Cloud computing environments.

Introduction to Big Data Analysis.- Parallel Environments.- A Deep Dive
into the Hadoop World to Explore its VariousPerformances.- Natural Language
Processing and Machine Learning for Big Data.- Big Data and Cyber Foraging:
Future Scope and Challenges.- Parallel GA in Big Data Analysis.- Evolutionary
Algorithm Based Techniques to Handle Big Data.- Statistical and Evolutionary
Feature Selection TechniquesParallelized using MapReduce Programming
Model.- A Data Aware Scheme for Scheduling Big-Data Applications on SAVANNA
Hadoop.- The Role of Grid Technologies: A Next Level Combat with Big Data.