Muutke küpsiste eelistusi

Terahertz Spectroscopy: Principles and Applications [Kõva köide]

Edited by (Washington State University, Pullman, USA)
  • Formaat: Hardback, 356 pages, kõrgus x laius: 234x156 mm, kaal: 635 g, 8 Tables, black and white; 3 Halftones, black and white; 300 Illustrations, black and white
  • Sari: Optical Science and Engineering
  • Ilmumisaeg: 22-Dec-2007
  • Kirjastus: CRC Press Inc
  • ISBN-10: 0849375258
  • ISBN-13: 9780849375255
Teised raamatud teemal:
  • Formaat: Hardback, 356 pages, kõrgus x laius: 234x156 mm, kaal: 635 g, 8 Tables, black and white; 3 Halftones, black and white; 300 Illustrations, black and white
  • Sari: Optical Science and Engineering
  • Ilmumisaeg: 22-Dec-2007
  • Kirjastus: CRC Press Inc
  • ISBN-10: 0849375258
  • ISBN-13: 9780849375255
Teised raamatud teemal:
The development of new sources and methods in the terahertz spectral range has generated intense interest in terahertz spectroscopy and its application in an array of fields. Presenting state-of-the-art terahertz spectroscopic techniques, Terahertz Spectroscopy: Principles and Applications focuses on time-domain methods based on femtosecond laser sources and important recent applications in physics, materials science, chemistry, and biomedicine.

The first section of the book examines instrumentation and methods for terahertz spectroscopy. It provides a comprehensive treatment of time-domain terahertz spectroscopic measurements, including methods for the generation and detection of terahertz radiation, methods for determining optical constants from time-domain measurements, and the use of femtosecond time-resolved techniques. The last two sections explore a variety of applications of terahertz spectroscopy in physics, materials science, chemistry, and biomedicine.

With chapters contributed by leading experts in academia, industry, and research, this volume thoroughly discusses methods and applications, setting it apart from other recent books in this emerging terahertz field.
Preface xi
Editor xiii
Contributors xv
SECTION I Instrumentation and Methods
1 Terahertz Time-Domain Spectroscopy with Photoconductive Antennas
1
R. Alan Cheville
1.1 Introduction to Terahertz Spectral Region
1
1.2 Brief Theoretical Background for Photoconductive Terahertz Generation
3
1.3 Terahertz-Generation Process
6
1.4 Detecting Terahertz Radiation Using Photoconductive Antennas
10
1.5 Experimental Considerations of Terahertz Spectroscopy
19
1.6 Terahertz Beam Propagation and Optical Systems
24
1.7 Adaptations and Extensions of Terahertz Spectroscopy Systems
30
References
37
2 Nonlinear Optical Techniques for Terahertz Pulse Generation and Detection — Optical Rectification and Electrooptic Sampling
41
Ingrid Wilke and Suranjana Sengupta, Rensselaer Polytechnic Institute
2.1 Introduction
42
2.1.1 Terahertz Time-Domain Spectroscopy: An Overview
42
2.2 Optical Rectification and Linear Electrooptic Effect
44
2.3 Experimental Results of Terahertz-Frequency Radiation Generation by Optical Rectification of Femtosecond Laser Pulses
49
2.3.1 Materials
50
2.3.1.1 Semiconductors
50
2.3.1.2 Inorganic Electrooptic Crystals
52
2.3.1.3 Organic Electrooptic Crystals
52
2.3.2 Recent Developments
56
2.4 Experimental Results of Terahertz Electrooptic Detection
57
2.4.1 Materials
57
2.4.1.1 Semiconductors and Inorganic Crystals
57
2.4.1.2 Organic Crystals
64
2.5 Application of Electrooptic Sampling of Terahertz Electric Field Transients
65
References
69
3 Time-Resolved Terahertz Spectroscopy and Terahertz Emission Spectroscopy
73
Jason B. Baxter and Charles A. Schmuttenmaer, Yale University
3.1 Introduction
74
3.2 Time-Resolved Terahertz Spectroscopy
75
3.2.1 Introduction
75
3.2.2 History and Examples
77
3.2.3 Experimental Setup and Data Collection
78
3.2.3.1 Basic Requirements
78
3.2.3.2 Detailed Description of Spectrometer
79
3.2.3.3 Data Collection
81
3.2.3.4 Importance of Spot Size
83
3.2.4 Data Workup
84
3.2.4.1 Calculating Conductivity
84
3.2.4.2 Use of Complex Transmission Coefficients
88
3.2.4.3 Special Treatment at Short Pump-Delay Times
92
3.2.4.4 Treatment of Porous Media
95
3.3 Terahertz Emission Spectroscopy
96
3.3.1 Experimental
97
3.3.1.1 Far Field versus Near Field
98
3.3.1.2 Terahertz Focusing Optics
99
3.3.2 Data Analysis
99
3.3.2.1 Sample Orientation
100
3.3.2.2 Excitation Polarization
100
3.3.2.3 Emitted Waveform
100
3.3.3 Specific Examples
103
3.3.3.1 Photoconductive Switches
103
3.3.3.2 Shift Currents and Optical Rectification
103
3.3.3.3 Intramolecular Charge Transfer in Orienting Field
107
3.3.3.4 Demagnetization Dynamics
112
3.3.4 General Formalism
113
3.4 Conclusions
115
References
115
SECTION II Applications in Physics and Materials Science
4 Time-Resolved Terahertz Studies of Carrier Dynamics in Semiconductors, Superconductors, and Strongly Correlated Electron Materials
119
Robert A. Kaindl, Lawrence Berkeley National Laboratory
Richard D. Averitt*, Boston University
4.1 Introduction
120
4.2 Bulk and Nanostructured Semiconductors
121
4.2.1 Overview
121
4.2.2 Free Carrier Dynamics in Bulk Semiconductors
122
4.2.3 Intraexcitonic Spectroscopy
128
4.2.4 Intersubband Transitions
134
4.3 Superconductors
136
4.3.1 Overview
136
4.3.2 Far-IR Spectroscopy of Superconductors
137
4.3.3 Quasiparticle Dynamics in Conventional Superconductors
142
4.3.4 Quasiparticle Dynamics in High-Tc Superconductors
145
4.4 Half-Metallic Metals: Manganites and Pyrochlores
150
4.4.1 Overview
150
4.4.2 Optical Conductivity and Spectral Weight Transfer
152
4.4.3 Dynamic Spectral Weight Transfer in Manganites
153
4.4.4 Carrier Stabilization in TI2Mn2O7 through Spatial Inhomogeneity
155
4.5 Summary and Outlook
158
Acknowledgments
160
References
160
5 Time-Resolved Terahertz Studies of Conductivity Processes in Novel Electronic Materials
171
Jie Shan, Case Western Reserve University
Susan L. Dexheimer, Washington State University
5.1 Introduction
172
5.2 Charge Transport in Photo-Excited Insulators: Polarons in Single-Crystal Sapphire
173
5.3 Charge Transport in Disordered Electronic Materials: Dispersive Transport in Amorphous Semiconductors and Semiconducting Organic Polymers
176
5.3.1 Amorphous Semiconductors
177
5.3.2 Semiconducting Organic Polymers
182
5.4 Polaron Formation and Dynamics in Molecular Electronic Materials
184
5.4.1 Dynamics of Polaron Formation: Quasi-One-Dimensional Systems
185
5.4.2 Carrier Transport in Pentacene
187
5.5 Charge Transport in Nanoscale Materials: Nanocrystalline Semiconductors and Quantum Dots
188
5.5.1 Conductivity and Dielectric Screening in Nanoporous TiO2
189
5.5.2 Excitons in Semiconductor Quantum Dots
190
5.6 Extending into Mid-Infrared Spectral Regime: Carrier Dynamics in Graphite
193
Summary
196
Acknowledgments
196
References
196
6 Optical Response of Semiconductor Nanostructures in Terahertz Fields Generated by Electrostatic Free-Electron Lasers
205
Sam G. Carter*, University of Colorado, Boulder
John Cerne*, State University of New York at Buffalo
Mark S. Sherwin, University of California, Santa Barbara
6.1 Introduction
206
6.1.1 Overview of Scientific Results
207
6.1.2 Semiconductor Quantum Wells
212
6.1.2.1 Interband (NIR) Properties
213
6.1.2.2 Intraband (Terahertz) Properties
214
6.1.3 Experimental Techniques
214
6.1.3.1 In-Plane Terahertz Electric Fields
214
6.1.3.2 Growth-Direction Terahertz Electric Fields
216
6.1.4 Electrostatic Free-Electron Lasers
216
6.2 Internal Dynamics of Excitons and Effects of Terahertz Radiation on Excitonic Photoluminescence
217
6.2.1 Introduction
217
6.2.2 Internal Dynamics of Magnetoexcitons Measured by Optically Detected Terahertz Resonance Spectroscopy
218
6.2.2.1 Experimental Results
219
6.2.3 Nonresonant PL Quenching Mechanism
227
6.2.3.1 Experiment
227
6.2.3.2 Results
227
6.2.3.3 Drude Analysis of Carrier Heating
230
6.2.3.4 Discussion
230
6.3 Near-Infrared-Terahertz Mixing
233
6.3.1 Introduction
233
6.3.2 NIR-Terahertz Mixing with In-Plane Terahertz Polarization: Sideband Generation and Nonlinear Spectroscopy of Magnetoexcitons
234
6.3.2.1 Experimental Setup
234
6.3.2.2 Results
234
6.3.2.3 Discussion
238
6.3.3 NIR-Terahertz Mixing with Out-of-Plane Terahertz Polarization: Excitonic and Electronic Intersubband Transitions
239
6.3.3.1 Undoped Square QWs
240
6.3.3.2 Undoped Asymmetric Coupled QWs
245
6.3.3.3 Doped Asymmetric Coupled QWs
248
6.3.4 Conclusion
251
6.4 Modifying Exciton States with Terahertz Radiation
251
6.4.4 Bacittti-ound: Static Electric Field Effects
252
6.4.2 Dynamic Franz-Keldysh Effect
252
6.4.3 AC Stark Effect: Autler–Townes Splitting
256
6.4.4 Conclusions
263
6.5 Conclusion
264
References
265
SECTISECTION III Applications in Chemistry and Biomedicine
7 Terahertz Spectroscopy of Biomolecules
269
Edwin J. Heilweil and David F. Plusquellic, National Institute of Standards and Technology
7.1 Introduction
269
7.2 Experimental Procedures
270
7.3 Theoretical Spectral Modeling Methods
272
7.4 Weakly Interacting Organic Model Compounds
274
7.5 Small Biomolecules as Crystalline Solids
276
7.5.1 Amino Acids
277
7.5.2 Polypeptides
278
7.5.3 Nucleic Acid Bases and Other Sugars
280
7.5.4 Other Small Biomolecules
282
7.6 Terahertz Studies of Large Biomolecules
286
7.6.1 DNAs and RNAs
286
7.6.2 Proteins
288
7.6.3 Polysaccharides
292
7.7 Terahertz Studies of Biomolecules in Liquid Water
293
7.8 Conclusions and Future Investigations
294
Acknowledgments
295
References
295
8 Pharmaceutical and Security Applications of Terahertz Spectroscopy
299
J. Axel Zeitler, University of Cambridge
Thomas Rades, University of Otago
Philip F. Taday, TeraView Ltd.
8.1 Introduction
299
8.2 Pharmaceutical Materials Setting
300
8.3 Applications of Terahertz Spectroscopy in Pharmaceutics
303
8.4 Security Applications
313
8.5 Conclusions
320
Acknowledgments
320
References
320
Index 325


Dexheimer, Susan L.