Muutke küpsiste eelistusi

Terrestrial Neutron-induced Soft Error In Advanced Memory Devices [Kõva köide]

(Hitachi Ltd, Japan), (Tohoku Univ, Japan), (Renesas Technology Corp, Japan), (Hitachi Ltd, Japan), (Tohoku Univ, Japan)
  • Formaat: Hardback, 368 pages
  • Ilmumisaeg: 03-Apr-2008
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 9812778810
  • ISBN-13: 9789812778819
Teised raamatud teemal:
  • Formaat: Hardback, 368 pages
  • Ilmumisaeg: 03-Apr-2008
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 9812778810
  • ISBN-13: 9789812778819
Teised raamatud teemal:
Terrestrial neutron-induced soft errors in semiconductor memory devices are currently a major concern in reliability issues. Understanding the mechanism and quantifying soft-error rates are primarily crucial for the design and quality assurance of semiconductor memory devices.This book covers the relevant up-to-date topics in terrestrial neutron-induced soft errors, and aims to provide succinct knowledge on neutron-induced soft errors to the readers by presenting several valuable and unique features.
Preface v
About the Authors xi
Chapter 1 Introduction 1
1.1 Background
1
1.2 General Description of the SEE Mechanism
4
1.3 Overview of Quantitative Evaluation Methods
7
Chapter 2 Terrestrial Neutron Spectrometry and Dosimetry 11
2.1 Introduction
11
2.2 Neutron Detection Method
13
2.2.1 Multi-moderator spectrometer (Bonner Ball, Bonner sphere)
13
2.2.2 Organic liquid scintillation spectrometer
17
2.2.3 Dose equivalent counter (rem counter)
21
2.2.4 Phoswich-type detector
26
2.3 Experimental Procedure
33
2.3.1 Sequential neutron measurements on the ground at sea level
33
2.3.2 Neutron measurements aboard an airplane and at mountain level
40
2.3.3 Data analysis
48
2.4 Results and Discussions
51
2.4.1 Atmospheric pressure effect
51
2.4.2 Neutron energy spectra
53
2.4.3 Time-sequential results of neutron ambient dose equivalent rates
65
2.4.4 Average values of neutron flux and ambient dose equivalent
69
2.4.5 Variation with latitude, altitude and solar activity,
73
2.4.6 Calculation of the cosmic-ray neutron spectrum
83
2.5 Concluding Remarks
90
Chapter 3 Irradiation Testing in the Terrestrial Field 93
3.1 What Does Real-Time SER Mean?
93
3.2 Statistics and FIT Estimation Methodology
95
3.2.1 Confidence level
96
3.2.2 SER FIT rate calculation (example)
97
3.3 Overview of the Real-Time SER Evaluation System for Memory Devices
98
3.3.1 Overview of the memory devices
99
3.3.2 General description of a Real-Time SER evaluation system
103
3.4 Environmental Conditions of Real-Time SER Testing
105
3.4.1 Spatial and temporal variation of the terrestrial neutron energy spectrum and dose
105
3.4.2 Geomagnetic latitude, longitude and altitude of Real-Time SER tests
106
3.4.3 Day-, night-time and monthly variation of neutron dose at ground level
110
3.4.4 Monitoring of neutron dose during Real-Time SER testing
114
3.5 Real-Time SER Pre-test Preparations
116
3.5.1 Sample selection
116
3.5.2 DUT preparation and orientation
117
3.5.3 Test program verification
117
3.5.4 Effective neutron flux at the test location
118
3.5.5 Test locations of Real-Time SER testing
118
3.6 The Impact of Noise on Real-Time SER and Neutron Dose Rate: An Example of Field-testing
120
3.6.1 Concrete attenuation length
121
3.6.2 Verification of the altitude dependence at field-testing
122
3.6.3 Correlation between neutron dose rate and neutron-induced soft error in the field
124
3.6.4 Neutron dose equivalent rate in the environment
124
3.6.5 Comparison of MCU ratio between RTSER and neutron-induced SER
129
3.6.6 Analysis of MCU and anomalous noise results from SER testing at the USA test sites
131
3.6.7 Relation between the influence of solar wind and the change in neutron dose rate
132
3.6.8 Verification of proper operation of the rem counter after the SER test
134
3.7 Summary
134
Chapter 4 Neutron Irradiation Test Facilities 139
4.1 Overview of Neutron Sources used in Neutron Irradiation Test Facilities
139
4.2 Monoenergetic Neutron Source below 20 MeV
141
4.2.1 14 MeV neutron source
143
4.2.2 Variable energy sources; Fast Neutron Laboratory (FNL), Tohoku University
143
4.2.3 Variable energy source at the National Physics Laboratory (NPL)
150
4.3 Quasi-monoenergetic Source above 20 MeV
151
4.3.1 7Li(p,n) and 9 Be(p,n) neutron sources
151
4.3.2 Neutron spectrum and intensity of the 7Li(p,n) source
154
4.3.3 Utilization of 7Li(p,n) sources for SEU experiments
158
4.3.4 Experimental tail correction method
165
4.4 Spallation Neutron Facilities
167
4.4.1 Overview of spallation sources
167
4.4.2 LANSCE (Los Alamos Neutron Science Center), LANL, New Mexico, USA
168
4.4.3 TRIUMF (TRI-University Meson Facility), Vancouver, BC, Canada
171
4.4.4 RCNP (Research Center for Nuclear Physics), Osaka University, Japan
172
4.4.5 Comparison of the neutron flux at various spallation neutron sources
173
4.5 Summary
174
Chapter 5 Review and Discussion of Experimental Data 175
5.1 Monoenergetic Neutron Tests and SEU Excitation Function
175
5.1.1 SEU cross sections in the literature
176
5.1.2 Irradiation test for SEU susceptibility using a mono- and a quasi-monoenergetic neutron source
179
5.1.3 Measurement of the threshold energy for SEU and its importance
191
5.2 Application of SEU Excitation Functions
196
5.2.1 Spallation neutron irradiation tests and the unfolding method
196
5.2.2 Experiments using the spallation neutron beams at LANSCE
198
5.2.3 Validation of the SER estimation method using monoenergetic and quasi-monoenergetic neutron beams
201
5.2.4 Derivation of SEU, function from spallation neutron tests
203
5.2.5 A framework on our SER evaluation system – SECIS
207
5.3 Analysis of Multi-Cell Upsets (MCUs)
209
5.3.1 MCU ratio and its neutron peak-energy dependence
209
5.3.2 MCU ratio and frequency distribution function of MCU
212
5.4 Summary
217
Chapter 6 Monte Carlo Simulation Methods 219
6.1 Nuclear Reaction Model
219
6.2 The Device Model
223
6.2.1 The single bit model and basic charge collection mechanism
273
6.2.2 The MCU model
224
6.2.3 Dynamic cell-shift method 10 simulate cm infinite cell matrix
225
6.2.4 The method to implement data pattern into cell matrix
225
6.2.5 The method to implement bit patterns in a word
226
6.3 Numerical Data for SER Simulations
227
6.3.1 Materials in silicon semiconductors
227
6.3.2 Elements in silicon semiconductors
278
6.3.3 Total cross section
228
6.3.4 Non-elastic reaction cross section
230
6.3.5 Inverse binary reaction cross section
231
6.3.6 LET calculation for a composite material
232
6.4 A Virtual Composite Model
234
Chapter 7 Simulation Results and Their Implications 237
7.1 Validation of the Model
237
7.1.1 Nuclear reaction model
237
7.1.2 Accelerator test results
237
7.1.3 Field test results
240
7.2 Impact of Scaling
240
7.3 Asymmetry in Multi-Cell Errors
244
7.3.1 Dispersed and nearest neighbor MCUs
244
7.3.2 MBU sensitive to architecture
246
7.3.3 The margin-of-interleave technique to suppress MBUs
247
7.4 Material Effects
248
7.4.1 Secondary ions from different materials
249
7.4.2 Results from a virtual composite material device
249
7.5 Threshold Energy of SEU Excitation Function
251
Chapter 8 International Standardization of the Neutron Test Method 253
8.1 The Current Status of Standardization
253
8.2 Monoenergetic Proton Method
254
8.3 (Quasi-) Monoenergetic Neutron Method
254
8.4 Spallation Neutron Method
256
Chapter 9 Summary and Challenges 259
9.1 Standard Test Method for Multi-Cell Upset
259
9.2 Neutron-Induced Errors in Logic Devices
259
9.3 In-depth Study on Material Effects
261
9.4 Possible Feedbacks from the System Side
262
9.5 Countermeasures in Multiple Hierarchies
262
9.5.1 Countermeasures at the process/device level
263
9.5.2 Countermeasures at the component level
264
9.5.3 Countermeasures at the system level
266
9.6 Interdisciplinary Co-operation Necessary for the Next Step of Challenges
267
A. Appendices 269
A.1 Radiological Protection Quantities
269
A.2 Approximation Functions for Total Cross Section
273
A.3 Approximation Functions for Non-elastic Cross Section
278
A.4 Comparison of GEM Calculation Results for Inverse Reaction Cross Section with Literature Data
283
A.5 LET Approximation Results in Substrate Used for Silicon Devices
286
A.6 Coefficients for LET Calculation for Substrate Used in Silicon Devices
289
References 291
Terms and Definitions 317
Index 335