About the Author |
|
xv | |
About the Technical Reviewer |
|
xvii | |
Acknowledgments |
|
xix | |
Introduction |
|
xxi | |
|
Chapter 1 Natural Language Basics |
|
|
1 | (50) |
|
|
2 | (6) |
|
What Is Natural Language? |
|
|
2 | (1) |
|
The Philosophy of Language |
|
|
2 | (3) |
|
Language Acquisition and Usage |
|
|
5 | (3) |
|
|
8 | (2) |
|
Language Syntax and Structure |
|
|
10 | (15) |
|
|
11 | (1) |
|
|
12 | (2) |
|
|
14 | (1) |
|
|
15 | (8) |
|
|
23 | (2) |
|
|
25 | (12) |
|
Lexical Semantic Relations |
|
|
25 | (3) |
|
Semantic Networks and Models |
|
|
28 | (1) |
|
Representation of Semantics |
|
|
29 | (8) |
|
|
37 | (9) |
|
Corpora Annotation and Utilities |
|
|
38 | (1) |
|
|
39 | (1) |
|
|
40 | (6) |
|
Natural Language Processing |
|
|
46 | (3) |
|
|
46 | (1) |
|
Speech Recognition Systems |
|
|
47 | (1) |
|
Question Answering Systems |
|
|
47 | (1) |
|
Contextual Recognition and Resolution |
|
|
48 | (1) |
|
|
48 | (1) |
|
|
49 | (1) |
|
|
49 | (1) |
|
|
50 | (1) |
|
Chapter 2 Python Refresher |
|
|
51 | (56) |
|
|
51 | (9) |
|
|
54 | (1) |
|
Applications: When Should You Use Python? |
|
|
55 | (3) |
|
Drawbacks: When Should You Not Use Python? |
|
|
58 | (1) |
|
Python Implementations and Versions |
|
|
59 | (1) |
|
|
60 | (6) |
|
|
60 | (1) |
|
|
61 | (1) |
|
Integrated Development Environments |
|
|
61 | (1) |
|
|
62 | (2) |
|
|
64 | (2) |
|
Python Syntax and Structure |
|
|
66 | (3) |
|
Data Structures and Types |
|
|
69 | (9) |
|
|
70 | (2) |
|
|
72 | (1) |
|
|
73 | (1) |
|
|
74 | (1) |
|
|
75 | (1) |
|
|
76 | (1) |
|
|
77 | (1) |
|
|
78 | (1) |
|
|
78 | (6) |
|
|
79 | (1) |
|
|
80 | (2) |
|
|
82 | (2) |
|
|
84 | (7) |
|
|
84 | (1) |
|
|
85 | (1) |
|
|
86 | (1) |
|
|
87 | (1) |
|
|
88 | (2) |
|
|
90 | (1) |
|
The itertools and functools Modules |
|
|
91 | (1) |
|
|
91 | (3) |
|
|
94 | (10) |
|
|
94 | (2) |
|
String Operations and Methods |
|
|
96 | (8) |
|
Text Analytics Frameworks |
|
|
104 | (2) |
|
|
106 | (1) |
|
Chapter 3 Processing and Understanding Text |
|
|
107 | (60) |
|
|
108 | (7) |
|
|
108 | (4) |
|
|
112 | (3) |
|
|
115 | (17) |
|
|
115 | (1) |
|
|
116 | (1) |
|
Removing Special Characters |
|
|
116 | (2) |
|
|
118 | (1) |
|
|
119 | (1) |
|
|
120 | (1) |
|
|
121 | (7) |
|
|
128 | (3) |
|
|
131 | (1) |
|
Understanding Text Syntax and Structure |
|
|
132 | (33) |
|
Installing Necessary Dependencies |
|
|
133 | (1) |
|
Important Machine Learning Concepts |
|
|
134 | (1) |
|
Parts of Speech (POS) Tagging |
|
|
135 | (8) |
|
|
143 | (10) |
|
|
153 | (5) |
|
Constituency-based Parsing |
|
|
158 | (7) |
|
|
165 | (2) |
|
Chapter 4 Text Classification |
|
|
167 | (50) |
|
What Is Text Classification? |
|
|
168 | (2) |
|
Automated Text Classification |
|
|
170 | (2) |
|
Text Classification Blueprint |
|
|
172 | (2) |
|
|
174 | (3) |
|
|
177 | (16) |
|
|
179 | (2) |
|
|
181 | (6) |
|
Advanced Word Vectorization Models |
|
|
187 | (6) |
|
Classification Algorithms |
|
|
193 | (6) |
|
|
195 | (2) |
|
|
197 | (2) |
|
Evaluating Classification Models |
|
|
199 | (5) |
|
Building a Multi-Class Classification System |
|
|
204 | (10) |
|
|
214 | (1) |
|
|
215 | (2) |
|
Chapter 5 Text Summarization |
|
|
217 | (48) |
|
Text Summarization and Information Extraction |
|
|
218 | (2) |
|
|
220 | (3) |
|
|
220 | (1) |
|
|
220 | (1) |
|
|
221 | (1) |
|
|
221 | (1) |
|
Singular Value Decomposition |
|
|
221 | (2) |
|
|
223 | (1) |
|
|
224 | (1) |
|
|
225 | (9) |
|
|
226 | (4) |
|
Weighted Tag-Based Phrase Extraction |
|
|
230 | (4) |
|
|
234 | (16) |
|
|
235 | (6) |
|
Latent Dirichlet Allocation |
|
|
241 | (4) |
|
Non-negative Matrix Factorization |
|
|
245 | (1) |
|
Extracting Topics from Product Reviews |
|
|
246 | (4) |
|
Automated Document Summarization |
|
|
250 | (13) |
|
|
253 | (3) |
|
|
256 | (5) |
|
Summarizing a Product Description |
|
|
261 | (2) |
|
|
263 | (2) |
|
Chapter 6 Text Similarity and Clustering |
|
|
265 | (54) |
|
|
266 | (2) |
|
Information Retrieval (IR) |
|
|
266 | (1) |
|
|
267 | (1) |
|
|
267 | (1) |
|
Unsupervised Machine Learning Algorithms |
|
|
268 | (1) |
|
|
268 | (2) |
|
|
270 | (1) |
|
|
271 | (1) |
|
Analyzing Term Similarity |
|
|
271 | (14) |
|
|
274 | (1) |
|
|
275 | (2) |
|
|
277 | (1) |
|
Levenshtein Edit Distance |
|
|
278 | (5) |
|
Cosine Distance and Similarity |
|
|
283 | (2) |
|
Analyzing Document Similarity |
|
|
285 | (11) |
|
|
287 | (2) |
|
Hellinger-Bhattacharya Distance |
|
|
289 | (3) |
|
|
292 | (4) |
|
|
296 | (3) |
|
Clustering Greatest Movies of All Time |
|
|
299 | (18) |
|
|
301 | (7) |
|
|
308 | (5) |
|
Ward's Agglomerative Hierarchical Clustering |
|
|
313 | (4) |
|
|
317 | (2) |
|
Chapter 7 Semantic and Sentiment Analysis |
|
|
319 | (58) |
|
|
320 | (1) |
|
|
321 | (9) |
|
|
321 | (2) |
|
Analyzing Lexical Semantic Relations |
|
|
323 | (7) |
|
Word Sense Disambiguation |
|
|
330 | (2) |
|
|
332 | (4) |
|
Analyzing Semantic Representations |
|
|
336 | (6) |
|
|
336 | (2) |
|
|
338 | (4) |
|
|
342 | (1) |
|
Sentiment Analysis of IMDb Movie Reviews |
|
|
343 | (33) |
|
|
343 | (4) |
|
|
347 | (1) |
|
Supervised Machine Learning Technique |
|
|
348 | (4) |
|
Unsupervised Lexicon-based Techniques |
|
|
352 | (22) |
|
Comparing Model Performances |
|
|
374 | (2) |
|
|
376 | (1) |
Index |
|
377 | |