Preface |
|
v | |
|
|
1 | (1) |
|
|
1 | (1) |
|
1.2 Basics of Pattern Recognition |
|
|
2 | (2) |
|
|
2 | (2) |
|
|
4 | (1) |
|
1.3 Pattern Recognition Applications |
|
|
4 | (4) |
|
|
4 | (1) |
|
1.3.2 Optical Character Recognition |
|
|
5 | (1) |
|
1.3.3 Fingerprint Identification |
|
|
6 | (2) |
|
1.4 Pattern Recognition Structure |
|
|
8 | (1) |
|
|
8 | (1) |
|
|
8 | (1) |
|
|
9 | (1) |
|
|
9 | (1) |
|
1.5 Design Principles of Pattern Recognition |
|
|
9 | (1) |
|
1.6 The Design Cycle of Pattern Recognition |
|
|
10 | (2) |
|
|
11 | (1) |
|
|
11 | (1) |
|
|
11 | (1) |
|
1.6.4 Training Classifier |
|
|
12 | (1) |
|
1.6.5 Evaluation Classifier |
|
|
12 | (1) |
|
|
12 | (3) |
|
1.7.1 Supervised Learning |
|
|
13 | (1) |
|
1.7.2 Unsupervised Learning |
|
|
14 | (1) |
|
1.7.3 Reinforcement Learning |
|
|
14 | (1) |
|
|
15 | (1) |
|
1.9 Basic Pattern Recognition Approaches |
|
|
15 | |
|
1.9.1 Statistical Pattern Recognition |
|
|
16 | (1) |
|
1.9.2 Neural Pattern Recognition |
|
|
17 | (1) |
|
1.9.3 Syntactical Pattern Recognition |
|
|
18 | (1) |
|
|
19 | (1) |
|
|
20 | |
|
2 Mathematical Foundations |
|
|
1 | (1) |
|
2.1 Introduction to Linear Algebra |
|
|
1 | (1) |
|
|
2 | (1) |
|
|
2 | (3) |
|
|
2 | (1) |
|
|
3 | (1) |
|
|
3 | (1) |
|
|
3 | (2) |
|
2.3 Important Properties of Probabilities |
|
|
5 | (4) |
|
|
5 | (1) |
|
2.3.2 Conditional Probability |
|
|
5 | (2) |
|
|
7 | (2) |
|
|
9 | (1) |
|
|
9 | (1) |
|
|
9 | (1) |
|
|
9 | (2) |
|
2.5.1 Arithmetic Mean (AM) |
|
|
10 | (1) |
|
2.5.2 Geometric Mean (GM) |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
11 | (1) |
|
2.7 Probability Distribution Function |
|
|
12 | (1) |
|
2.7.1 Cumulative Probability Distributions Function |
|
|
12 | (1) |
|
2.7.2 Uniform Probability Distribution Function |
|
|
13 | (1) |
|
2.8 Classification of Probability Distribution Function |
|
|
13 | (5) |
|
2.8.1 Discrete Probability Distributions |
|
|
13 | (1) |
|
2.8.2 Continuous Probability Distributions |
|
|
14 | (4) |
|
|
18 | |
|
2.9.1 Chi-Square Distribution Table |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
20 | |
|
3 Statistical Pattern Recognition |
|
|
1 | (1) |
|
|
1 | (1) |
|
3.2 Bayes Decision Theory |
|
|
2 | |
|
|
12 | (1) |
|
|
12 | |
|
4 Parameter Estimation Methods |
|
|
1 | (1) |
|
|
1 | (1) |
|
4.2 Maximum Likelihood Estimation |
|
|
2 | (3) |
|
|
5 | (3) |
|
|
8 | (1) |
|
4.5 Principal Components Analysis |
|
|
9 | (1) |
|
4.6 Computing Process of Principal Components |
|
|
10 | (1) |
|
4.7 Fisher Linear Discriminate Analysis |
|
|
11 | |
|
|
13 | (1) |
|
|
14 | |
|
5 Expectation Maximization |
|
|
1 | (1) |
|
|
1 | (2) |
|
|
3 | (4) |
|
5.3 Gaussian Mixture Model |
|
|
7 | |
|
|
9 | (1) |
|
|
10 | (1) |
|
|
10 | |
|
6 Non-parametric Techniques of Estimation |
|
|
1 | (1) |
|
|
1 | (5) |
|
6.2 K-Nearest Neighbor Rule |
|
|
6 | (2) |
|
6.3 Nearest Neighbor Rules |
|
|
8 | |
|
|
15 | (1) |
|
|
16 | |
|
7 Unsupervised Learning and Clustering |
|
|
1 | (1) |
|
|
1 | (1) |
|
|
1 | (2) |
|
7.2.1 Basic Step of Clustering |
|
|
2 | (1) |
|
7.3 Clustering Techniques |
|
|
3 | (2) |
|
7.3.1 Partitioning Clustering |
|
|
3 | (1) |
|
7.3.2 Hierarchical Clustering |
|
|
3 | (1) |
|
7.3.3 Agglomerative Hierarchical Clustering |
|
|
4 | (1) |
|
7.3.4 Divisive Hierarchical Clustering |
|
|
5 | (1) |
|
7.4 Linkage Method of Hierarchical Clustering |
|
|
5 | (2) |
|
7.4.1 Average Linkage Method |
|
|
5 | (1) |
|
7.4.2 Centroid Linkage Method |
|
|
6 | (1) |
|
7.4.3 Complete Linkage Method |
|
|
6 | (1) |
|
7.4.4 Single Linkage Method |
|
|
7 | (1) |
|
|
7 | (5) |
|
|
12 | |
|
7.6.1 Measuring Approaches of Cluster Validation |
|
|
13 | (1) |
|
|
14 | (1) |
|
|
14 | |
Index |
|
1 | |