Preface |
|
v | |
|
|
1 | (36) |
|
1 Introduction and Preliminaries |
|
|
3 | (8) |
|
|
3 | (3) |
|
|
6 | (2) |
|
1.3 Tensor Decompositions |
|
|
8 | (2) |
|
1.4 Tensor Eigenvalue Problems |
|
|
10 | (1) |
|
2 Generalized Tensor Eigenvalue Problems |
|
|
11 | (26) |
|
|
11 | (2) |
|
|
13 | (1) |
|
2.3 Several Basic Properties |
|
|
14 | (6) |
|
2.3.1 Number of Eigenvalues |
|
|
14 | (1) |
|
|
15 | (1) |
|
2.3.3 Diagonalizable Tensor Pairs |
|
|
15 | (1) |
|
2.3.4 Gershgorin Circle Theorem |
|
|
16 | (3) |
|
2.3.5 Backward Error Analysis |
|
|
19 | (1) |
|
|
20 | (6) |
|
2.4.1 The Crawford Number |
|
|
21 | (1) |
|
2.4.2 Symmetric-Definite Tensor Pairs |
|
|
22 | (4) |
|
2.5 Sign-Complex Spectral Radius |
|
|
26 | (8) |
|
|
26 | (1) |
|
2.5.2 Collatz-Wielandt Formula |
|
|
27 | (2) |
|
2.5.3 Properties for Single Tensors |
|
|
29 | (2) |
|
2.5.4 The Componentwise Distance to Singularity |
|
|
31 | (2) |
|
|
33 | (1) |
|
2.6 An Illustrative Example |
|
|
34 | (3) |
|
|
37 | (42) |
|
3 Fast Tensor-Vector Products |
|
|
39 | (20) |
|
|
39 | (1) |
|
3.2 Exponential Data Fitting |
|
|
40 | (5) |
|
3.2.1 The One-Dimensional Case |
|
|
40 | (2) |
|
3.2.2 The Multidimensional Case |
|
|
42 | (3) |
|
3.3 Anti-Circulant Tensors |
|
|
45 | (5) |
|
|
46 | (1) |
|
|
47 | (2) |
|
|
49 | (1) |
|
3.4 Fast Hankel Tensor-Vector Product |
|
|
50 | (3) |
|
|
53 | (6) |
|
|
59 | (20) |
|
4.1 Inheritance Properties |
|
|
59 | (2) |
|
4.2 The First Inheritance Property of Hankel Tensors |
|
|
61 | (5) |
|
4.2.1 A Convolution Formula |
|
|
61 | (2) |
|
4.2.2 Lower-Order Implies Higher-Order |
|
|
63 | (2) |
|
4.2.3 SOS Decomposition of Strong Hankel Tensors |
|
|
65 | (1) |
|
4.3 The Second Inheritance Property of Hankel Tensors |
|
|
66 | (11) |
|
4.3.1 Strong Hankel Tensors |
|
|
66 | (2) |
|
4.3.2 A General Vandermonde Decomposition of Hankel Matrices |
|
|
68 | (3) |
|
4.3.3 An Augmented Vandermonde Decomposition of Hankel Tensors |
|
|
71 | (4) |
|
4.3.4 The Second Inheritance Property of Hankel Tensors |
|
|
75 | (2) |
|
4.4 The Third Inheritance Property of Hankel Tensors |
|
|
77 | (2) |
|
|
79 | (46) |
|
5 Definitions and Basic Properties |
|
|
81 | (16) |
|
|
81 | (2) |
|
|
81 | (1) |
|
5.1.2 From M-Matrix to M-Tensor |
|
|
82 | (1) |
|
5.2 Spectral Properties of M-Tensors |
|
|
83 | (1) |
|
|
84 | (6) |
|
|
84 | (1) |
|
5.3.2 Semi-Positive Z-Tensors |
|
|
85 | (2) |
|
5.3.3 Proof of Theorem 5.7 |
|
|
87 | (2) |
|
|
89 | (1) |
|
|
90 | (3) |
|
|
90 | (1) |
|
|
90 | (3) |
|
|
93 | (1) |
|
5.4.4 A Nontrivial Monotone Z-Tensor |
|
|
93 | (1) |
|
5.5 An Extension of M-Tensors |
|
|
93 | (2) |
|
|
95 | (2) |
|
6 Multilinear Systems with M-Tensors |
|
|
97 | (28) |
|
|
97 | (2) |
|
|
99 | (3) |
|
6.3 M-Equations and Beyond |
|
|
102 | (6) |
|
|
102 | (2) |
|
6.3.2 Nonpositive Right-Hand Side |
|
|
104 | (1) |
|
6.3.3 Nonhomogeneous Left-Hand Side |
|
|
105 | (1) |
|
6.3.4 Absolute M-Equations |
|
|
106 | (1) |
|
|
107 | (1) |
|
6.4 Iterative Methods for M-Equations |
|
|
108 | (6) |
|
6.4.1 The Classical Iterations |
|
|
109 | (2) |
|
6.4.2 The Newton Method for Symmetric M-Equations |
|
|
111 | (1) |
|
|
112 | (2) |
|
6.5 Perturbation Analysis of M-Equations |
|
|
114 | (4) |
|
6.5.1 Backward Errors of Triangular M-Equations |
|
|
115 | (1) |
|
|
116 | (2) |
|
|
118 | (7) |
Bibliography |
|
125 | (10) |
Subject Index |
|
135 | |