Muutke küpsiste eelistusi

Theory of Nilpotent Groups 1st ed. 2017 [Kõva köide]

  • Formaat: Hardback, 307 pages, kõrgus x laius: 235x155 mm, kaal: 6151 g, XVII, 307 p., 1 Hardback
  • Ilmumisaeg: 28-Nov-2017
  • Kirjastus: Birkhauser Verlag AG
  • ISBN-10: 3319662112
  • ISBN-13: 9783319662114
Teised raamatud teemal:
  • Kõva köide
  • Hind: 113,55 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 133,59 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 307 pages, kõrgus x laius: 235x155 mm, kaal: 6151 g, XVII, 307 p., 1 Hardback
  • Ilmumisaeg: 28-Nov-2017
  • Kirjastus: Birkhauser Verlag AG
  • ISBN-10: 3319662112
  • ISBN-13: 9783319662114
Teised raamatud teemal:
This monograph presents both classical and recent results in the theory of nilpotent groups and provides a self-contained, comprehensive reference on the topic. While the theorems and proofs included can be found throughout the existing literature, this is the first book to collect them in a single volume. Details omitted from the original sources, along with additional computations and explanations, have been added to foster a stronger understanding of the theory of nilpotent groups and the techniques commonly used to study them. Topics discussed include collection processes, normal forms and embeddings, isolators, extraction of roots, P-localization, dimension subgroups and Lie algebras, decision problems, and nilpotent groups of automorphisms. Requiring only a strong undergraduate or beginning graduate background in algebra, graduate students and researchers in mathematics will find The Theory of Nilpotent Groups to be a valuable resource.
Commutator Calculus.- Introduction to Nilpotent Groups.- The Collection Process and Basic Commutators.- Normal Forms and Embeddings.- Isolators, Extraction of Roots, and P-Localization.- "The Group Ring of a Class of Infinite Nilpotent Groups" by S. A. Jennings.- Additional Topics.