Muutke küpsiste eelistusi

Thermal Effects in Supercapacitors 2015 ed. [Pehme köide]

  • Formaat: Paperback / softback, 147 pages, kõrgus x laius: 235x155 mm, kaal: 2467 g, 24 Illustrations, color; 8 Illustrations, black and white; VIII, 147 p. 32 illus., 24 illus. in color., 1 Paperback / softback
  • Sari: SpringerBriefs in Applied Sciences and Technology
  • Ilmumisaeg: 30-Jun-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319202413
  • ISBN-13: 9783319202419
  • Pehme köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 147 pages, kõrgus x laius: 235x155 mm, kaal: 2467 g, 24 Illustrations, color; 8 Illustrations, black and white; VIII, 147 p. 32 illus., 24 illus. in color., 1 Paperback / softback
  • Sari: SpringerBriefs in Applied Sciences and Technology
  • Ilmumisaeg: 30-Jun-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319202413
  • ISBN-13: 9783319202419
This Brief reviews contemporary research conducted in university and industry laboratories on thermal management in electrochemical energy storage systems (capacitors and batteries) that have been widely used as power sources in many practical applications, such as automobiles, hybrid transport, renewable energy installations, power backup and electronic devices. Placing a particular emphasis on supercapacitors, the authors discuss how supercapacitors, or ultra capacitors, are complementing and  replacing, batteries because of their faster power delivery, longer life cycle and higher coulombic efficiency, while providing higher energy density than conventional electrolytic capacitors. Recent advances in both macro- and micro capacitor technologies are covered. The work facilitates systematic understanding of thermal transport in such devices that can help develop better power management systems.
1 Thermal Management in Electrochemical Energy Storage Systems
1(10)
1.1 Supercapacitors
2(3)
1.2 Lithium Ion Batteries
5(2)
1.3 Fuel Cells
7(1)
1.4 Other Energy Storage Systems
8(3)
References
9(2)
2 Thermal Considerations for Supercapacitors
11(16)
2.1 Thermal Management in Different Applications
11(4)
2.1.1 Commercial Supercapacitors
11(2)
2.1.2 Micro-supercapacitors
13(1)
2.1.3 Supercapacitors Based on Liquid- and Solid-State Electrolytes
14(1)
2.2 Thermophysical Properties of Supercapacitor Components
15(3)
2.3 Mechanisms of Thermal Transport
18(1)
2.4 Experimental Techniques for Thermal Characterization
19(3)
2.5 Performance Evaluation Metrics
22(1)
2.6 Supercapacitor Cooling Systems
23(4)
References
24(3)
3 Influence of Temperature on Supercapacitor Components
27(44)
3.1 Influence of Temperature on Electrolytes
27(26)
3.1.1 Critical Thermophysical Properties of Electrolytes
27(5)
3.1.2 Thermal Stability and Ionic Conductivity
32(21)
3.2 Influence of Temperature on Electrodes
53(6)
3.2.1 Active Materials
53(3)
3.2.2 Binder
56(1)
3.2.3 Current Collectors
57(2)
3.3 Influence of Temperature on Separators
59(12)
References
61(10)
4 Influence of Temperature on Supercapacitor Performance
71(44)
4.1 Capacitance and ESR
71(12)
4.1.1 Organic Electrolytes
72(4)
4.1.2 Aqueous Electrolytes
76(1)
4.1.3 Ionic Electrolytes
77(3)
4.1.4 Solid-State/Polymer Gel Electrolytes
80(3)
4.2 Extreme-Temperature Performance
83(9)
4.2.1 Extreme Low-Temperature Performance
83(7)
4.2.2 Extreme High-Temperature Performance
90(2)
4.3 Aging
92(10)
4.3.1 Aging Tests
93(4)
4.3.2 Lifetime Predictions
97(1)
4.3.3 Influence of Temperature
98(2)
4.3.4 Impact of Other Parameters
100(2)
4.4 Self-Discharge
102(13)
4.4.1 Leakage Current and Leakage Resistance
102(2)
4.4.2 Influence of Temperature on Self-Discharge
104(1)
4.4.3 Influence of Other Parameters
105(1)
4.4.4 Mechanisms
106(2)
References
108(7)
5 Thermal Modeling of Supercapacitors
115(28)
5.1 Fundamentals of Thermal Modeling
115(4)
5.2 Thermal Models
119(24)
5.2.1 Electro-Thermal Models
120(4)
5.2.2 Lumped Models
124(4)
5.2.3 Finite Element Models
128(2)
5.2.4 Thermal Models for Supercapacitor Stacks
130(5)
5.2.5 Physics-Based Thermal Models
135(4)
References
139(4)
6 Summary and Outlook
143(2)
Appendix: Definition of Selected Acronyms 145(2)
Index 147