Muutke küpsiste eelistusi

Thermal Modeling of Petroleum Generation: Theory and Applications [Kõva köide]

Edited by
  • Formaat: Hardback, 526 pages, kõrgus: 230 mm, Illustrations, maps
  • Sari: Developments in Petroleum Science v.45
  • Ilmumisaeg: 18-Dec-1996
  • Kirjastus: Elsevier Science Ltd
  • ISBN-10: 0444820302
  • ISBN-13: 9780444820303
Teised raamatud teemal:
  • Kõva köide
  • Hind: 208,38 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 526 pages, kõrgus: 230 mm, Illustrations, maps
  • Sari: Developments in Petroleum Science v.45
  • Ilmumisaeg: 18-Dec-1996
  • Kirjastus: Elsevier Science Ltd
  • ISBN-10: 0444820302
  • ISBN-13: 9780444820303
Teised raamatud teemal:
Explains to students and exploratory geologists the functioning and limitations of available models of complex geological systems over geological time, used to predict where petroleum might be, particularly those that focus on the temperature, which is most difficult to determine. Does not explain how to use the models. Assumes no strong background in chemistry, geochemistry, or mathematics. The topics include time and temperature in petroleum generation, burial history, paleotemperatures, Tissot-Espitalie type kinetic models, maturity modeling, and extended models. Also describes applications in rift basins, passive margins, deltas, overthrust belts and foreland basics, and evaporites. Includes a glossary without pronunciation. Annotation c. by Book News, Inc., Portland, Or.

Petroleum exploration has always been limited by the lack of adequate subsurface control. Exploration problems are usually problems of extrapolation i.e. to greater depth, to laterally equivalent rocks, or back through time.

Models are widely used as a way of describing complex geological systems so that they can be treated quantitatively and used as the basis for extrapolations and predictions. Models consider, typically, a simplified geological system that can be described mathematically. It is very important to know what simplifying assumptions have been made, when these assumptions are valid, and under what conditions their use may not be appropriate. This requires an understanding of the concepts involved in building the model and how the model operates.

Models are best used as a tool for probing the system and evaluating the sensitivity of the conclusions to possible uncertainties in the values of the input parameters. In a sense, models permit experimental petroleum geochemistry and allow the user to answer the What if? questions e.g. What if the geothermal gradient had been higher in the past? What if the organic matter type had been different?

This book provides students, exploration geologists, and others who would like to use the available models, with a general idea of how the models work, what they can do, and what their limitations are.

It also provides the information necessary to obtain the input data required by the commercial models.

Preface I(8)
Acknowledgments IX
CHAPTER
1. TIME AND TEMPERATURE IN PETROLEUM GENERATION
1(66)
1.1. Introduction
1(1)
1.2. Chemical terminology
2(5)
1.2.1. Hydrocarbons
2(3)
1.2.2. Compounds with heteroatoms
5(1)
1.2.3. Isotopes
6(1)
1.3. Analytical methods
7(6)
1.3.1. Total organic carbon and total organic matter
7(1)
1.3.2. Kerogen concentrates
7(1)
1.3.3. Solvent extraction of bitumen
7(1)
1.3.4. Liquid chromatography
8(1)
1.3.5. Gas chromatography (GC)
8(1)
1.3.6. Mass spectrometry (MS)
9(3)
1.3.7. GCMS -- the combination of mass spectrometry with gas chromatography
12(1)
1.3.8. Overall analytical scheme
12(1)
1.4. Recent sediments
13(5)
1.4.1. Total organic content
13(1)
1.4.2. Organic compounds
13(4)
1.4.3. Isotopic composition
17(1)
1.5. Petroleum generation
18(8)
1.5.1. Introduction
18(1)
1.5.2. Changes in kerogen composition
19(2)
1.5.3. Changes in physical characteristics of kerogen
21(1)
1.5.4. Generation of hydrocarbons and the factors involved
21(5)
1.6. Biogenic gas
26(1)
1.7. Petroleum migration
27(9)
1.7.1. Introduction
27(1)
1.7.2. Migration in solution
27(1)
1.7.3. Migration of a petroleum phase
28(4)
1.7.4. Transport through carrier beds
32(2)
1.7.5. Remobilization
34(2)
1.8. Maturation and alteration of petroleum in reservoirs
36(5)
1.8.1. Introduction
36(1)
1.8.2. Maturation
37(1)
1.8.3. Alteration
38(3)
1.9. Classical source rock evaluation
41(19)
1.9.1. Introduction
41(1)
1.9.2. Quantity of organic matter
41(1)
1.9.3. Type of organic matter
42(1)
1.9.4. Generation status ("Maturity")
42(18)
1.10. Nature and amount of petroleum products
60(4)
1.10.1. Introduction
60(1)
1.10.2. Microscopic characterization
60(1)
1.10.3. Elemental analysis
61(1)
1.10.4. Pyrolysis techniques
62(1)
1.10.5. Convertibilities
63(1)
1.11. Correlation
64(3)
1.11.1. Introduction
64(1)
1.11.2. Oil-to-oil correlation
65(1)
1.11.3. Oil-to-source rock correlation
66(1)
CHAPTER
2. INTRODUCTION TO THERMAL MODELS
67(16)
2.1. Introduction
67(1)
2.2. Kinetics
68(11)
2.3. Thermal models
79(4)
CHAPTER
3. BURIAL HISTORY
83(56)
3.1. Introduction
83(2)
3.2. Multiple layers
85(1)
3.3. Construction of simple burial history
85(2)
3.4. Sediment accumulation rates
87(5)
3.5. Compaction
92(24)
3.5.1. Introduction
92(1)
3.5.2. Porosity
93(9)
3.5.3. Significance of compaction
102(3)
3.6. Unconformities
3.6.1. Principle
105(3)
3.6.2. Reconstruction
108(8)
3.7. Rotation of beds (including folding)
116(3)
3.8. Faulting
119(3)
3.9. Intrusions and diapirs
122(2)
3.10. Water depth (Paleobathymetry)
124(3)
3.11. Exceptions to site-specific reconstructions
127(1)
3.12. Timing of structure development
128(2)
3.13. Geologic Ages
130(9)
3.13.1. Radioactive decay
130(1)
3.13.2. Potassium-argon dating
130(5)
3.13.3. Rubidium-strontium methods
135(2)
3.13.4. Other dating techniques
137(2)
CHAPTER
4. PRESENT DAY TEMPERATURES
139(35)
4.1. Thermal regimes
139(16)
4.1.1. Introduction
139(1)
4.1.2. Heat flow
140(4)
4.1.3. Thermal conductivity
144(4)
4.1.4. Geothermal gradients
148(7)
4.2. Present day temperatures
155(9)
4.2.1. Introduction
155(3)
4.2.2. Extrapolations and pseudo-Horner plots
158(2)
4.2.3. Gas hydrate stabilities
160(3)
4.2.4. Chemistry of formation waters
163(1)
4.3. Drilling-induced complications
164(1)
4.3.1. Abnormal pressures
164(1)
4.3.2. Cement
165(1)
4.4. Geologic complications
165(9)
4.4.1. Waterflow
165(1)
4.4.2. Lateral heat flow
166(1)
4.4.3. Faults
167(1)
4.4.4. Lack of thermal equilibrium
168(1)
4.4.5. Salt domes
169(1)
4.4.6. Unrecognized igneous intrusions
170(1)
4.4.7. Temperature anomalies over oil fields
170(1)
4.4.8. Anthropogenic complications
171(3)
CHAPTER
5. PALEOTEMPERATURES
174(54)
5.1. Representing temperatures
174(2)
5.2. Geologic setting
176(4)
5.2.1. Introduction
176(1)
5.2.2. Geologic settings
176(4)
5.3. Direct measurement
180(32)
5.3.1. Fluid inclusions
180(8)
5.3.2. Vitrinite reflectance
188(4)
5.3.3. Fission track annealing methods
192(5)
5.3.4. Biomarker transformations
197(8)
5.3.5. Clay transformations
205(4)
5.3.6. Miscellaneous methods
209(3)
5.4. Calculation from thermal conductivity and heat flow
212(4)
5.5. Paleosurface temperatures
216(7)
5.5.1. Latitude variations
216(1)
5.5.2. Geographic setting
217(2)
5.5.3. Rock type
219(2)
5.5.4. Fossil indicators
221(1)
5.5.5. Isotopic methods
221(2)
5.6. Complicating factors
223(5)
CHAPTER
6. TIME/TEMPERATURE COMBINATIONS AND THE LOPATIN METHOD
228(15)
6.1. Early models
228(2)
6.2. The Lopatin method and calculation of TTI
230(4)
6.3. Calibration
234(4)
6.4. Oil window
238(3)
6.5. Limitations of the Lopatin method
241(2)
CHAPTER
7. TISSOT-ESPITALIE TYPE KINETIC MODELS
243(32)
7.1. Introduction
243(1)
7.2. Models
244(2)
7.3. Sources of E, A data
246(17)
7.3.1. Introduction
246(1)
7.3.2. Pyrolysis
247(8)
7.3.3. Default values
255(3)
7.3.4. Outcrop samples
258(1)
7.3.5. Oil-Source correlation
259(4)
7.4. Time intervals
263(1)
7.5. Checks on validity of models
263(9)
7.5.1. Introduction
263(1)
7.5.2. Calculation of vitrinite reflectance
264(1)
7.5.3. Comparison of calculated and modeled values
265(3)
7.5.4. Karst development
268(2)
7.5.5. Fluid inclusions containing oil
270(1)
7.5.6. Biodegraded crude oils
271(1)
7.6. Relationship to Lopatin
272(3)
CHAPTER
8. USES OF MATURITY MODELING
275(26)
8.1. Introduction
275(1)
8.2. Generation status
275(6)
8.2.1. Present day status
275(2)
8.2.2. Areal extent of mature source rocks
277(4)
8.3. Timing of generation
281(5)
8.3.1. Introduction
281(3)
8.3.2. Timing of generation and trap formation
284(2)
8.4. Modeling oil versus gas
286(2)
8.5. Preservation
288(6)
8.5.1. Oil
288(3)
8.5.2. Gas
291(3)
8.6. Sensitivity to modeled conditions
294(3)
8.7. Limitations of thermal models
297(4)
CHAPTER
9. EXTENDED MODELS
301(26)
9.1. Introduction
301(1)
9.2. Quantities generated
302(6)
9.2.1. Organic matter type
302(1)
9.2.2. Organic matter content
302(4)
9.2.3. Quantities generated
306(2)
9.3. 2-D models
308(6)
9.4. Abnormal pressures
314(2)
9.5. Petroleum migration
316(6)
9.5.1. Expulsion (primary migration)
316(3)
9.5.2. Migration through carrier beds (secondary migration)
319(3)
9.6. 3-D models
322(2)
9.7. Reservoir quality
324(3)
CHAPTER
10. APPLICATIONS
327(90)
10.1. Introduction
327(1)
10.2. Interior basins
328(20)
10.2.1. Introduction
328(3)
10.2.2. Lopatin modeling
331(5)
10.2.3. 1-D Kinetic modeling
336(7)
10.2.4. 2-D Kinetic modeling
343(5)
10.3. Rift basins
348(26)
10.3.1. Introduction
348(3)
10.3.2. Lopatin modeling
351(5)
10.3.3. 1-D Kinetic modeling
356(3)
10.3.4. 2-D Kinetic modeling
359(5)
10.3.5. 3-D Kinetic modeling
364(10)
10.4. Passive margins
374(5)
10.4.1. Introduction
374(1)
10.4.2. Lopatin modeling
374(1)
10.4.3. 1-D Kinetic modeling
375(3)
10.4.4. 2-D Kinetic modeling
378(1)
10.5. Deltas
379(13)
10.5.1. Introduction
379(1)
10.5.2. Sediments and thermal regimes
379(2)
10.5.3. Organic materials
381(3)
10.5.4. Petroleum generation and accumulation
384(1)
10.5.5. Lopatin modeling
385(2)
10.5.6. 1-D Kinetic modeling
387(1)
10.5.7. 2-D Kinetic modeling
388(2)
10.5.8. Complicating factors
390(2)
10.6. Overthrust belts and foreland basins
392(16)
10.6.1. Introduction
392(3)
10.6.2. Lopatin modeling
395(6)
10.6.3. 1-D Kinetic modeling
401(4)
10.6.4. 2-D Kinetic modeling
405(3)
10.7. Evaporites
408(9)
10.7.1. Introduction: Role in petroleum geology
408(1)
10.7.2. Burial history reconstruction
409(2)
10.7.3. Thermal reconstructions
411(6)
APPENDIX I. Abbreviations 417(2)
APPENDIX II. Glossary 419(8)
APPENDIX III. Geologic Time Scale 427(2)
REFERENCES 429(74)
INDEX 503