Muutke küpsiste eelistusi

Thermal Properties Measurement of Materials [Kõva köide]

  • Formaat: Hardback, 352 pages, kõrgus x laius x paksus: 239x163x23 mm, kaal: 635 g
  • Ilmumisaeg: 09-Jan-2018
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • ISBN-10: 1786302551
  • ISBN-13: 9781786302557
Teised raamatud teemal:
  • Formaat: Hardback, 352 pages, kõrgus x laius x paksus: 239x163x23 mm, kaal: 635 g
  • Ilmumisaeg: 09-Jan-2018
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • ISBN-10: 1786302551
  • ISBN-13: 9781786302557
Teised raamatud teemal:

This book presents the main methods used for thermal properties measurement. It aims to be accessible to all those, specialists in heat transfer or not, who need to measure the thermal properties of a material. The objective is to allow them to choose the measurement method the best adapted to the material to be characterized, and to pass on them all the theoretical and practical information allowing implementation with the maximum of precision.

Preface xi
Nomenclature xiii
Chapter 1 Modeling of Heat Transfer 1(38)
1.1 The different modes of heat transfer
1(7)
1.1.1 Introduction and definitions
1(2)
1.1.2 Conduction
3(2)
1.1.3 Convection
5(1)
1.1.4 Radiation
6(2)
1.1.5 Heat storage
8(1)
1.2 Modeling heat transfer by conduction
8(25)
1.2.1 The heat equation
8(2)
1.2.2 Steady-state conduction
10(7)
1.2.3 Conduction in unsteady state
17(8)
1.2.4 The quadrupole method
25(8)
1.3 The thermal properties of a material
33(6)
1.3.1 Thermal conductivity
33(3)
1.3.2 Thermal diffusivity
36(1)
1.3.3 Volumetric heat capacity
36(1)
1.3.4 Thermal effusivity
36(1)
1.3.5 Conclusion
37(2)
Chapter 2 Tools and Methods for Thermal Characterization 39(44)
2.1 Measurement of temperature
39(11)
2.1.1 Liquid column thermometer
39(1)
2.1.2 Thermocouple
40(2)
2.1.3 Thermistor
42(1)
2.1.4 Platinum resistance
43(1)
2.1.5 IR detector
44(1)
2.1.6 IR camera
44(3)
2.1.7 Choice of a measurement method
47(1)
2.1.8 Data filtering
48(2)
2.2 Tools for parameter estimation
50(33)
2.2.1 Introduction
50(1)
2.2.2 Quadrupole modeling
50(5)
2.2.3 Dimensional analysis
55(2)
2.2.4 Study of reduced sensitivity
57(6)
2.2.5 Method for estimating parameters
63(2)
2.2.6 Evaluation of the estimation error due to the measurement noise
65(2)
2.2.7 Other sources of error
67(7)
2.2.8 Validity domain of a model and estimation time interval
74(6)
2.2.9 Choice of the temperature's origin
80(1)
2.2.10 Conclusion
80(3)
Chapter 3 Steady-state Methods 83(34)
3.1 Introduction
83(1)
3.2 Guarded hot plate
84(2)
3.2.1 Principle
84(1)
3.2.2 Hypotheses and model
85(1)
3.2.3 Experimental design
86(1)
3.2.4 Practice of the measurement
86(1)
3.3 Center hot plate
86(7)
3.3.1 Principle
86(1)
3.3.2 Hypotheses and model
87(2)
3.3.3 Experimental set-up
89(1)
3.3.4 Practice of the measurement
90(3)
3.4 Hot strip
93(6)
3.4.1 Principle
93(1)
3.4.2 Hypotheses and model
94(4)
3.4.3 Experimental set-up
98(1)
3.4.4 Practice of the measurement
98(1)
3.5 Hot tube
99(8)
3.5.1 Principle
99(2)
3.5.2 Hypotheses and model
101(1)
3.5.3 Experimental set-up
102(2)
3.5.4 Practice of the measurement
104(3)
3.6 Cut bar
107(10)
3.6.1 Principle
107(2)
3.6.2 Hypotheses and model
109(1)
3.6.3 Experimental set-up
110(1)
3.6.4 Practice of the measurement
110(7)
Chapter 4 Flux/Temperature Transient Methods 117(106)
4.1 Introduction
117(1)
4.2 Infinite hot plate
117(11)
4.2.1 Principle
117(1)
4.2.2 Hypotheses and model
118(4)
4.2.3 Experimental design
122(1)
4.2.4 Practice of the measurement
122(3)
4.2.5 Asymmetric setup
125(3)
4.3 Asymmetric hot plate
128(6)
4.3.1 Measuring temperature
128(3)
4.3.2 Measurement of two temperatures
131(3)
4.4 Hot wire
134(8)
4.4.1 Principle
134(1)
4.4.2 Hypotheses and model
135(4)
4.4.3 Experimental setup
139(1)
4.4.4 Practice of the measurement
140(2)
4.5 Flash 1D
142(31)
4.5.1 Principle
142(4)
4.5.2 Hypotheses and models
146(12)
4.5.3 Methods for the estimation of diffusivity
158(7)
4.5.4 Experimental setups
165(8)
4.6 Flash 3D
173(15)
4.6.1 Principle and history
173(2)
4.6.2 Hypotheses and model
175(2)
4.6.3 Identification method
177(4)
4.6.4 Example of an experimental setup
181(4)
4.6.5 Practice of the measurement
185(3)
4.7 Hot disc
188(10)
4.7.1 Principle
188(1)
4.7.2 Hypotheses and model
189(5)
4.7.3 Experimental setup
194(1)
4.7.4 Experimental study
194(4)
4.8 Hot strip
198(14)
4.8.1 Principle
198(1)
4.8.2 Hypotheses and model
199(5)
4.8.3 Experimental setup
204(1)
4.8.4 Practice of the measurement
205(7)
4.9 Method
212(6)
4.9.1 Principle
212(1)
4.9.2 Hypotheses and model
213(2)
4.9.3 Experimental setup
215(1)
4.9.4 Practice of the measurement
216(2)
4.10 Calorimetry
218(5)
4.10.1 Differential calorimeter
219(2)
4.10.2 Drop calorimeter
221(2)
Chapter 5 Transient Temperature/Temperature Methods 223(34)
5.1 Introduction
223(4)
5.2 Planar three-layer
227(9)
5.2.1 Principle
227(2)
5.2.2 Hypotheses and model
229(4)
5.2.3 Experimental set-up
233(1)
5.2.4 Practice of the method
234(2)
5.3 Cylindrical three-layer
236(14)
5.3.1 Principle
236(2)
5.3.2 Hypotheses and model
238(8)
5.3.3 Experimental set-up
246(1)
5.3.4 Experimental practice
247(3)
5.4 Transient fin method
250(7)
5.4.1 Principle
250(1)
5.4.2 Hypotheses and model
251(3)
5.4.3 Experimental set-up
254(1)
5.4.4 Practice of the measurement
255(2)
Chapter 6 Choice of an Adapted Method 257(10)
6.1 Measurement advice
257(6)
6.1.1 How many measurements?
257(1)
6.1.2 Steady-state or transient mode"
258(1)
6.1.3 What if the material is wet?
259(1)
6.1.4 What if the material is semi-transparent?
260(3)
6.2 Choice of method
263(4)
6.2.1 Consolidated solid
263(2)
6.2.2 Liquids
265(1)
6.2.3 Powders
266(1)
6.2.4 Thin films
266(1)
Chapter 7 Analogies Between Different Transfers 267(10)
7.1 Diffusion of heat by conduction
267(1)
7.2 Diffusion of water vapor
268(2)
7.3 Flow of a gas in a porous medium
270(2)
7.4 Analogy between the different transfers
272(1)
7.5 Example of adaptation of a thermal method to another domain
273(4)
Appendices 277(34)
Appendix
1. Physical Properties of Some Materials
279(2)
Appendix
2. Physical Properties of Air and Water
281(2)
Appendix
3. Transfer Coefficients in Natural Convection
283(2)
Appendix
4. Main Integral Transformations: Laplace, Fourier and Hankel
285(4)
Appendix
5. Inverse Laplace Transformation
289(4)
Appendix
6. Value of the Function ERF
293(2)
Appendix
7. Quadrupole Matrices for Different Configurations
295(4)
Appendix
8. Bessel Equations and Functions
299(2)
Appendix
9. Influence of Radiation on Temperature Measurement
301(4)
Appendix
10. Case Study
305(6)
Bibliography 311(10)
Index 321
Yves Jannot, LETMA-CNRS, France.

Alain Degiovanni, University of Lorraine, France.