Muutke küpsiste eelistusi

Think DSP [Pehme köide]

  • Formaat: Paperback / softback, 168 pages, kõrgus x laius x paksus: 233x175x16 mm, kaal: 300 g
  • Ilmumisaeg: 30-Aug-2016
  • Kirjastus: O'Reilly Media
  • ISBN-10: 1491938455
  • ISBN-13: 9781491938454
Teised raamatud teemal:
  • Pehme köide
  • Hind: 29,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 35,19 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 168 pages, kõrgus x laius x paksus: 233x175x16 mm, kaal: 300 g
  • Ilmumisaeg: 30-Aug-2016
  • Kirjastus: O'Reilly Media
  • ISBN-10: 1491938455
  • ISBN-13: 9781491938454
Teised raamatud teemal:

Think DSP: Digital Signal Processing in Python is an introduction to signal processing and system analysis using a computational approach. The premise of this book (like the others in the Think X series) is that if you know how to program, you can use that skill to learn other things. By the end of the first chapter, you'll be able to decompose a sound into its harmonics, modify the harmonics, and generate new sounds. Subsequent chapters follow a logical progression that develops the important ideas incrementally, with a focus on applications.

Preface vii
1 Sounds and Signals
1(12)
Periodic Signals
1(2)
Spectral Decomposition
3(2)
Signals
5(2)
Reading and Writing Waves
7(1)
Spectrums
7(1)
Wave Objects
8(1)
Signal Objects
9(2)
Exercises
11(2)
2 Harmonics
13(12)
Triangle Waves
13(3)
Square Waves
16(1)
Aliasing
17(3)
Computing the Spectrum
20(1)
Exercises
21(4)
3 Non-Periodic Signals
25(14)
Linear Chirp
25(3)
Exponential Chirp
28(1)
Spectrum of a Chirp
29(1)
Spectrogram
30(1)
The Gabor Limit
31(1)
Leakage
32(1)
Windowing
33(2)
Implementing Spectrograms
35(4)
4 Noise
39(14)
Uncorrelated Noise
39(3)
Integrated Spectrum
42(1)
Brownian Noise
43(3)
Pink Noise
46(2)
Gaussian Noise
48(2)
Exercises
50(3)
5 Autocorrelation
53(12)
Correlation
53(3)
Serial Correlation
56(1)
Autocorrelation
57(1)
Autocorrelation of Periodic Signals
58(3)
Correlation as Dot Product
61(1)
Using NumPy
62(2)
Exercises
64(1)
6 Discrete Cosine Transform
65(12)
Synthesis
66(1)
Synthesis with Arrays
66(2)
Analysis
68(1)
Orthogonal Matrices
69(2)
DCT-IV
71(1)
Inverse DCT
72(1)
The Dct Class
73(1)
Exercises
74(3)
7 Discrete Fourier Transform
77(14)
Complex Exponentials
77(2)
Complex Signals
79(1)
The Synthesis Problem
80(2)
Synthesis with Matrices
82(2)
The Analysis Problem
84(1)
Efficient Analysis
85(1)
DFT
86(1)
The DFT Is Periodic
87(1)
DFT of Real Signals
88(2)
Exercises
90(1)
8 Filtering and Convolution
91(14)
Smoothing
91(3)
Convolution
94(1)
The Frequency Domain
95(2)
The Convolution Theorem
97(1)
Gaussian Filter
98(2)
Efficient Convolution
100(1)
Efficient Autocorrelation
101(2)
Exercises
103(2)
9 Differentiation and Integration
105(14)
Finite Differences
105(2)
The Frequency Domain
107(1)
Differentiation
108(3)
Integration
111(1)
Cumulative Sum
112(3)
Integrating Noise
115(1)
Exercises
116(3)
10 LTI Systems
119(14)
Signals and Systems
119(2)
Windows and Filters
121(1)
Acoustic Response
122(3)
Systems and Convolution
125(3)
Proof of the Convolution Theorem
128(2)
Exercises
130(3)
11 Modulation and Sampling
133(16)
Convolution with Impulses
133(1)
Amplitude Modulation
134(3)
Sampling
137(3)
Aliasing
140(3)
Interpolation
143(3)
Summary
146(1)
Exercises
147(2)
Index 149
Allen Downey is a Professor of Computer Science at Olin College of Engineering. He has taught at Wellesley College, Colby College and U.C. Berkeley. He has a Ph.D. in Computer Science from U.C. Berkeley and Master's and Bachelor's degrees from MIT.