Muutke küpsiste eelistusi

Time Series Analysis for the State-Space Model with R/Stan 2021 ed. [Kõva köide]

  • Formaat: Hardback, 347 pages, kõrgus x laius: 235x155 mm, kaal: 711 g, 216 Illustrations, black and white; XIII, 347 p. 216 illus., 1 Hardback
  • Ilmumisaeg: 31-Aug-2021
  • Kirjastus: Springer Verlag, Singapore
  • ISBN-10: 9811607109
  • ISBN-13: 9789811607103
  • Kõva köide
  • Hind: 141,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 166,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 347 pages, kõrgus x laius: 235x155 mm, kaal: 711 g, 216 Illustrations, black and white; XIII, 347 p. 216 illus., 1 Hardback
  • Ilmumisaeg: 31-Aug-2021
  • Kirjastus: Springer Verlag, Singapore
  • ISBN-10: 9811607109
  • ISBN-13: 9789811607103
This book provides a comprehensive and concrete illustration of time series analysis focusing on the state-space model, which has recently attracted increasing attention in a broad range of fields. The major feature of the book lies in its consistent Bayesian treatment regarding whole combinations of batch and sequential solutions for linear Gaussian and general state-space models: MCMC and Kalman/particle filter. The reader is given insight on flexible modeling in modern time series analysis. The main topics of the book deal with the state-space model, covering extensively, from introductory and exploratory methods to the latest advanced topics such as real-time structural change detection. Additionally, a practical exercise using R/Stan based on real data promotes understanding and enhances the reader’s analytical capability.  

Introduction.- Fundamental of probability and statistics.- Fundamentals
of handling time series data with R.- Quick tour of time series
analysis.- State-space model.- State estimation in the state-space
model.- Batch solution for linear Gaussian state-space model.- Sequential
solution for linear Gaussian state-space model.- Introduction and analysis
examples of a well-known component model.- Batch solution for general
state-space model.- Sequential solution for general state-space
model.- Example of applied analysis in general state-space model.
Junichiro Hagiwara received the B.E., M.E., and Ph.D. degrees from Hokkaido University, Sapporo, Japan, in 1990, 1992, and 2016, respectively. He joined the Nippon Telegraph and Telephone Corporation in April 1992 and transferred to NTT Mobile Communications Network, Inc. (currently NTT DOCOMO, INC.) in July 1992. Later, he became involved in the research and development of mobile communication systems. His current research interests are in the application of stochastic theory to the communication domain. He is currently a visiting professor at Hokkaido University.