Muutke küpsiste eelistusi

Topics in Grammatical Inference Softcover reprint of the original 1st ed. 2016 [Pehme köide]

Edited by , Edited by
  • Formaat: Paperback / softback, 247 pages, kõrgus x laius: 235x155 mm, kaal: 4102 g, 7 Illustrations, color; 49 Illustrations, black and white; XVII, 247 p. 56 illus., 7 illus. in color., 1 Paperback / softback
  • Ilmumisaeg: 27-May-2018
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3662569205
  • ISBN-13: 9783662569207
  • Pehme köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 247 pages, kõrgus x laius: 235x155 mm, kaal: 4102 g, 7 Illustrations, color; 49 Illustrations, black and white; XVII, 247 p. 56 illus., 7 illus. in color., 1 Paperback / softback
  • Ilmumisaeg: 27-May-2018
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3662569205
  • ISBN-13: 9783662569207
This book explains advanced theoretical and application-related issues in grammatical inference, a research area inside the inductive inference paradigm for machine learning. The first three chapters of the book deal with issues regarding theoretical learning frameworks; the next four chapters focus on the main classes of formal languages according to Chomsky's hierarchy, in particular regular and context-free languages; and the final chapter addresses the processing of biosequences.





 





The topics chosen are of foundational interest with relatively mature and established results, algorithms and conclusions. The book will be of value to researchers and graduate students in areas such as theoretical computer science, machine learning, computational linguistics, bioinformatics, and cognitive psychology who are engaged with the study of learning, especially of the structure underlying the concept to be learned. Some knowledge of mathematics and theoretical computer science, including formal language theory, automata theory, formal grammars, and algorithmics, is a prerequisite for reading this book.

Introduction.- Gold-Style Learning Theory.- Efficiency in the Identification in the Limit Learning Paradigm.- Learning Grammars and Automata with Queries.- On the Inference of Finite State Automata from Positive and Negative Data.- Learning Probability Distributions Generated by Finite-State Machines.- Distributional Learning of Context-Free and Multiple.- Context-Free Grammars.- Learning Tree Languages.- Learning the Language of Biological Sequences.