Muutke küpsiste eelistusi

Topics in Numerical Partial Differential Equations and Scientific Computing Softcover reprint of the original 1st ed. 2016 [Pehme köide]

  • Formaat: Paperback / softback, 176 pages, kõrgus x laius: 235x155 mm, kaal: 2934 g, 88 Illustrations, black and white; X, 176 p. 88 illus., 1 Paperback / softback
  • Sari: The IMA Volumes in Mathematics and its Applications 160
  • Ilmumisaeg: 09-Jun-2018
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 1493981870
  • ISBN-13: 9781493981878
  • Pehme köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 176 pages, kõrgus x laius: 235x155 mm, kaal: 2934 g, 88 Illustrations, black and white; X, 176 p. 88 illus., 1 Paperback / softback
  • Sari: The IMA Volumes in Mathematics and its Applications 160
  • Ilmumisaeg: 09-Jun-2018
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 1493981870
  • ISBN-13: 9781493981878

Numerical partial differential equations (PDEs) are an important part of numerical simulation, the third component of the modern methodology for science and engineering, besides the traditional theory and experiment.  This volume contains papers that originated with the collaborative research of the teams that participated in the IMA Workshop for Women in Applied Mathematics: Numerical Partial Differential Equations and Scientific Computing in August 2014.

A C^0 Interior Penalty Method for Elliptic Distributed Optimal Control Problems in Three Dimensions with Pointwise State Constraints.- The Effect of the Sensitivity Parameter in Weighted Essentially Non-Oscillatory Methods.- Study of a Mixed Dispersal Population Dynamics Model.- Optimization-based Decoupling Algorithms for a Fluid-Poroelastic System.- Study of Discrete Scattering Operators for Some Linear Kinetic Models.- On Metrics for Computation of Strength of Coupling in Multiphysics Simulations.