Muutke küpsiste eelistusi

Topics In Statistical Mechanics Second Edition [Pehme köide]

(Royal Holloway, Univ Of London, Uk)
  • Formaat: Paperback / softback, 452 pages
  • Sari: Advanced Textbooks in Physics
  • Ilmumisaeg: 10-Aug-2021
  • Kirjastus: World Scientific Europe Ltd
  • ISBN-10: 1786349906
  • ISBN-13: 9781786349903
Teised raamatud teemal:
  • Formaat: Paperback / softback, 452 pages
  • Sari: Advanced Textbooks in Physics
  • Ilmumisaeg: 10-Aug-2021
  • Kirjastus: World Scientific Europe Ltd
  • ISBN-10: 1786349906
  • ISBN-13: 9781786349903
Teised raamatud teemal:

Building on the material learned by students in their first few years of study, Topics on Statistical Mechanics (Second Edition) presents an advanced level course on statistical and thermal physics. It begins with a review of the formal structure of statistical mechanics and thermodynamics considered from a unified viewpoint. There is a brief revision of non-interacting systems, including quantum gases and a discussion of negative temperatures. Following this, emphasis is on interacting systems. First, weakly interacting systems are considered, where the interest is in seeing how small interactions cause small deviations from the non-interacting case. Second, systems are examined where interactions lead to drastic changes, namely phase transitions. A number of specific examples is given, and these are unified within the Landau theory of phase transitions. The final chapter of the book looks at non-equilibrium systems, in particular the way they evolve towards equilibrium. This is framed within the context of linear response theory. Here fluctuations play a vital role, as is formalized in the Fluctuation – Dissipation theorem. The second edition has been revised particularly to help students use this book for self-study. In addition, the section on non-ideal gases has been expanded, with a treatment of the hard sphere gas, and an accessible discussion of interacting quantum gases. In many cases there are details of Mathematica calculations, including Mathematica Notebooks, and expression of some results in terms of Special Functions.

Preface v
About the Author xi
1 The Methodology of Statistical Mechanics 1(60)
1.1 Terminology and Methodology
1(3)
1.1.1 Approaches to the subject
1(2)
1.1.2 Description of states
3(1)
1.1.3 Extensivity and the thermodynamic limit
3(1)
1.2 The Fundamental Principles
4(4)
1.2.1 The laws of thermodynamics
4(2)
1.2.2 Probabilistic interpretation of the First Law
6(1)
1.2.3 Microscopic basis for entropy
7(1)
1.3 Interactions - The Conditions for Equilibrium
8(10)
1.3.1 Thermal interaction - Temperature
8(3)
1.3.2 Volume change - Pressure
11(2)
1.3.3 Particle interchange - Chemical potential
13(1)
1.3.4 Thermal interaction with the rest of the world - The Boltzmann factor
14(2)
1.3.5 Particle and energy exchange with the rest of the world - The Gibbs factor
16(2)
1.4 Thermodynamic Averages
18(11)
1.4.1 The partition function
18(1)
1.4.2 Gibbs expression for entropy
19(2)
1.4.3 Free energy
21(1)
1.4.4 Thermodynamic variables
22(1)
1.4.5 The beta trick
23(1)
1.4.6 Fluctuations
24(2)
1.4.7 The grand partition function
26(1)
1.4.8 The grand potential
27(1)
1.4.9 Thermodynamic variables
28(1)
1.5 Quantum Distributions
29(6)
1.5.1 Bosons and Fermions
29(3)
1.5.2 Grand potential for identical particles
32(1)
1.5.3 The Fermi-Dirac distribution
33(1)
1.5.4 The Bose-Einstein distribution
34(1)
1.5.5 The classical limit - The Maxwell-Boltzmann distribution
34(1)
1.6 Classical Statistical Mechanics
35(11)
1.6.1 Phase space and classical states
35(2)
1.6.2 Boltzmann and Gibbs phase spaces
37(1)
1.6.3 The Fundamental Postulate in the classical case
38(1)
1.6.4 The classical partition function
39(1)
1.6.5 The equipartition theorem
39(2)
1.6.6 Consequences of equipartition
41(2)
1.6.7 Liouville's theorem
43(2)
1.6.8 Boltzmann's H theorem
45(1)
1.7 The Third Law of Thermodynamics
46(9)
1.7.1 History of the Third Law
46(1)
1.7.2 Entropy
47(1)
1.7.3 Quantum viewpoint
48(2)
1.7.4 Unattainability of absolute zero
50(1)
1.7.5 Heat capacity at low temperatures
51(1)
1.7.6 Other consequences of the Third Law
52(3)
1.7.7 Pessimist's statement of the laws of thermodynamics
55(1)
Problems
55(3)
References
58(3)
2 Practical Calculations with Ideal Systems 61(88)
2.1 The Density of States
61(7)
2.1.1 Non-interacting systems
61(1)
2.1.2 Converting sums to integrals
62(1)
2.1.3 Enumeration of states
62(2)
2.1.4 Counting states
64(1)
2.1.5 General expression for the density of states
65(2)
2.1.6 Relation between pressure and energy
67(1)
2.2 Identical Particles
68(2)
2.2.1 Indistinguishability
68(1)
2.2.2 Classical approximation
69(1)
2.3 The Ideal Gas
70(8)
2.3.1 Quantum approach
70(2)
2.3.2 Classical approach
72(1)
2.3.3 Thermodynamic properties
72(2)
2.3.4 The 1/N! term in the partition function
74(1)
2.3.5 Entropy of mixing
75(3)
2.4 The Quantum Gas
78(1)
2.4.1 Methodology for quantum gases
78(1)
2.5 Fermi Gas at Low Temperatures
79(16)
2.5.1 Ideal Fermi gas at zero temperature
79(3)
2.5.2 Fermi gas at low temperatures - Simple model
82(3)
2.5.3 Fermi gas at low temperatures - Series expansion
85(7)
2.5.4 More general treatment of low-temperature heat capacity
92(3)
2.6 Bose Gas at Low Temperatures
95(13)
2.6.1 General procedure for treating the Bose gas
95(1)
2.6.2 Ground state occupation - Chemical potential
96(1)
2.6.3 Number of particles
97(1)
2.6.4 Low-temperature behaviour of Bose gas
97(4)
2.6.5 Heat capacity of Bose gas
101(3)
2.6.6 Comparison with superfluid 4He
104(1)
2.6.7 Two-fluid model of superfluid 4He
105(1)
2.6.8 Elementary excitations
106(2)
2.7 Quantum Gas at High Temperatures - The Classical Limit
108(5)
2.7.1 General treatment for Fermi, Bose and Maxwell cases
108(1)
2.7.2 Quantum energy parameter
109(1)
2.7.3 Chemical potential
110(1)
2.7.4 Internal energy
111(1)
2.7.5 Equation of state
112(1)
2.8 Gas in a Harmonic Trap
113(8)
2.8.1 Enumeration and counting of states
113(2)
2.8.2 Trapped bosons at low temperatures - Bose- Einstein condensation
115(6)
2.9 Black Body Radiation - The Photon Gas
121(8)
2.9.1 Photons as quantised electromagnetic waves
121(1)
2.9.2 Photons in thermal equilibrium - Black body radiation
122(1)
2.9.3 Planck's formula
123(2)
2.9.4 Internal energy and heat capacity
125(2)
2.9.5 Black body radiation in one dimension - Johnson noise
127(2)
2.10 Ideal Paramagnet
129(10)
2.10.1 Partition function and free energy
129(1)
2.10.2 Thermodynamic properties
130(4)
2.10.3 Negative temperatures
134(2)
2.10.4 Thermodynamics of negative temperatures
136(3)
Problems
139(7)
References
146(3)
3 Non-ideal Gases 149(54)
3.1 Statistical Mechanics of Interacting Particles
149(5)
3.1.1 The partition function
149(1)
3.1.2 Cluster expansion
150(2)
3.1.3 Low-density approximation
152(1)
3.1.4 Equation of state
153(1)
3.2 The Virial Expansion
154(20)
3.2.1 Virial coefficients
154(1)
3.2.2 Hard-core potential
154(3)
3.2.3 Square-well potential
157(2)
3.2.4 Lennard-Jones potential
159(3)
3.2.5 The Sutherland potential
162(3)
3.2.6 Comparison of models
165(2)
3.2.7 Universal behaviour
167(1)
3.2.8 Quantum gases - The special case(s) of helium
168(6)
3.3 Thermodynamics
174(4)
3.3.1 Throttling
174(1)
3.3.2 Joule-Kelvin coefficient
175(1)
3.3.3 Connection with the second virial coefficient
176(1)
3.3.4 Inversion temperature
177(1)
3.4 Van der Waals Equation of State
178(4)
3.4.1 Approximating the partition function
178(1)
3.4.2 Van der Waals equation
179(1)
3.4.3 Estimation of van der Waals parameters
180(2)
3.4.4 Virial expansion
182(1)
3.5 Other Phenomenological Equations of State
182(3)
3.5.1 The Dieterici equation
182(2)
3.5.2 The Berthelot equation
184(1)
3.5.3 The Redlich-Kwong equation
184(1)
3.6 Hard-Sphere Gas
185(10)
3.6.1 Possible approaches
185(1)
3.6.2 Hard-sphere equation of state
186(2)
3.6.3 Virial expansion
188(1)
3.6.4 Virial coefficients
188(1)
3.6.5 Carnahan and Starling procedure
189(3)
3.6.6 Pade approximants
192(3)
Problems
195(5)
References
200(3)
4 Phase Transitions 203(110)
4.1 Phenomenology
203(16)
4.1.1 Basic ideas
203(2)
4.1.2 Phase diagrams
205(2)
4.1.3 Symmetry
207(1)
4.1.4 Order of phase transitions
208(1)
4.1.5 The order parameter
209(2)
4.1.6 Conserved and non-conserved order parameters
211(1)
4.1.7 Critical exponents
212(2)
4.1.8 The scaling hypothesis
214(4)
4.1.9 Scaling of the free energy
218(1)
4.2 First-Order Transition - An Example
219(13)
4.2.1 Coexistence
219(3)
4.2.2 Van der Waals fluid
222(1)
4.2.3 The Maxwell construction
223(3)
4.2.4 The critical point
226(1)
4.2.5 Corresponding states
226(3)
4.2.6 Dieterici's equation
229(1)
4.2.7 Quantum mechanical effects
230(2)
4.3 Second-Order Transition - An Example
232(11)
4.3.1 The ferromagnet
232(1)
4.3.2 The Weiss model
233(3)
4.3.3 Spontaneous magnetisation
236(2)
4.3.4 Critical behaviour
238(1)
4.3.5 Magnetic susceptibility
239(2)
4.3.6 The ground state and Goldstone modes
241(2)
4.4 The Ising and Other Models
243(11)
4.4.1 Ubiquity of the Ising model
243(2)
4.4.2 Magnetic case of the Ising model
245(2)
4.4.3 Ising model in one dimension
247(1)
4.4.4 Ising model in two dimensions
248(3)
4.4.5 Mean field critical exponents
251(2)
4.4.6 The XY model
253(1)
4.4.7 The spherical model
254(1)
4.5 Landau Theory of Phase Transitions
254(10)
4.5.1 Landau free energy
254(1)
4.5.2 Landau free energy for the ferromagnet
255(4)
4.5.3 Landau theory - Second-order transitions
259(2)
4.5.4 Heat capacity in the Landau model
261(1)
4.5.5 Ferromagnet in a magnetic field
262(2)
4.6 Ferroelectricity
264(10)
4.6.1 Description of the phenomenon
264(1)
4.6.2 Landau free energy
265(2)
4.6.3 Second-order case
267(1)
4.6.4 First-order case
268(4)
4.6.5 Entropy and latent heat at the transition
272(1)
4.6.6 Soft modes
273(1)
4.7 Binary Mixtures
274(16)
4.7.1 Basic ideas
274(1)
4.7.2 Model calculation
275(1)
4.7.3 System energy
276(1)
4.7.4 Entropy
277(1)
4.7.5 Free energy
278(1)
4.7.6 Phase separation - The lever rule
279(1)
4.7.7 Phase separation curve - The binodal
280(3)
4.7.8 The spinodal curve
283(1)
4.7.9 Entropy in the ordered phase
284(2)
4.7.10 Heat capacity in the ordered phase
286(1)
4.7.11 Order of the transition and the critical point
287(2)
4.7.12 The critical exponent p
289(1)
4.8 Quantum Phase Transitions
290(10)
4.8.1 Introduction
290(1)
4.8.2 The transverse Ising model
291(1)
4.8.3 Recap of mean field Ising model
292(2)
4.8.4 Application of a transverse field
294(2)
4.8.5 Transition temperature
296(1)
4.8.6 Quantum critical behaviour
297(1)
4.8.7 Dimensionality and critical exponents
298(2)
4.9 Retrospective
300(5)
4.9.1 The existence of order
300(1)
4.9.2 Validity of mean field theory
301(1)
4.9.3 Universality classes
302(2)
4.9.4 Features of different phase transition models
304(1)
Problems
305(4)
References
309(4)
5 Fluctuations and Dynamics 313(62)
5.1 Fluctuations
314(12)
5.1.1 Probability distribution functions
314(2)
5.1.2 Average behaviour of fluctuations
316(5)
5.1.3 The autocorrelation function
321(2)
5.1.4 The correlation time
323(1)
5.1.5 Spectral density - The Wiener-Khintchine theorem
324(2)
5.2 Brownian Motion
326(6)
5.2.1 Kinematics of a Brownian particle
327(2)
5.2.2 Short-time limit
329(1)
5.2.3 Long-time limit
330(1)
5.2.4 Equipartition
331(1)
5.3 Langevin's Equation
332(12)
5.3.1 Introduction
332(1)
5.3.2 Separation of forces
333(2)
5.3.3 The Langevin equation
335(1)
5.3.4 Velocity autocorrelation function
336(1)
5.3.5 Mean-square velocity and equipartition
337(1)
5.3.6 Diffusion coefficient
338(1)
5.3.7 Harmonically bound particle
339(2)
5.3.8 Equipartition and mean-square values
341(2)
5.3.9 Electrical analogue of the Langevin equation
343(1)
5.4 Linear Response I - Phenomenology
344(17)
5.4.1 Definitions and assumptions
344(2)
5.4.2 Response to a harmonic excitation
346(3)
5.4.3 Fourier representation
349(1)
5.4.4 Response to a step excitation
350(1)
5.4.5 Response to a "shock" or delta function excitation
351(1)
5.4.6 Response to a noise excitation
352(2)
5.4.7 Consequence of the reality of X(t)
354(1)
5.4.8 Consequence of causality
355(2)
5.4.9 Energy considerations
357(2)
5.4.10 Static susceptibility
359(1)
5.4.11 Relaxation time approximation
360(1)
5.5 Linear Response II - Microscopics
361(7)
5.5.1 Onsager's hypothesis
361(2)
5.5.2 Nyquist's theorem
363(2)
5.5.3 Calculation of the step response function
365(2)
5.5.4 Calculation of the autocorrelation function
367(1)
Problems
368(4)
References
372(3)
Appendix A The Gibbs-Duhem Relation 375(4)
A.1 Homogeneity of the Fundamental Relation
375(1)
A.2 The Euler Relation
375(1)
A.3 Two Caveats
376(1)
A.4 The Gibbs-Duhem Relation
376(3)
Appendix B Thermodynamic Potentials 379(8)
B.1 Equilibrium States
379(2)
B.2 Constant Temperature and Volume: The Helmholtz Potential
381(1)
B.3 Constant Pressure and Energy: The Enthalpy Function
382(1)
B.4 Constant Pressure and Temperature: The Gibbs Free Energy
383(1)
B.5 Differential Expressions for the Potentials
384(1)
B.6 Natural Variables and the Maxwell Relations
384(3)
Appendix C Mathematica Notebooks 387(22)
C.1 Chemical Potential of a Fermi Gas at Low Temperatures - Sommerfeld Expansion
387(3)
C.1.1 Setting up the problem
387(1)
C.1.2 Mathematica manipulations
388(2)
C.2 Internal Energy of a Fermi Gas at Low Temperatures - Sommerfeld Expansion
390(2)
C.2.1 Setting up the problem
390(1)
C.2.2 Mathematica manipulations
391(1)
C.3 Fugacity and Chemical Potential of the Fermi, Bose, and Maxwell Gas at High Temperatures
392(4)
C.3.1 Setting up the problem
392(1)
C.3.2 Mathematica manipulations
393(3)
C.4 Internal Energy of the Fermi, Bose, and Maxwell Gas at High Temperatures
396(3)
C.4.1 Setting up the problem
396(1)
C.4.2 Mathematica manipulations
397(2)
C.5 Chemical Potential of the Bose Gas at Low Temperatures
399(4)
C.5.1 Setting up the problem
399(1)
C.5.2 Mathematica manipulations
400(3)
C.6 Internal Energy (and Heat Capacity) of the Bose Gas at Low Temperatures
403(6)
C.6.1 Setting up the problem
403(1)
C.6.2 Mathematica manipulations
404(5)
Appendix D Evaluation of the Correlation Function Integral 409(4)
D.1 Initial Domain of Integration
409(1)
D.2 Transformation of Variables
410(1)
D.3 Jacobian of the Transformation
411(2)
Appendix E Bose-Einstein and Fermi-Dirac Distribution Functions 413(4)
E.1 Simple Derivation
413(3)
E.2 Parallel Evaluations
416(1)
References 417(2)
Index 419