Muutke küpsiste eelistusi

Topology and Geometric Group Theory: Ohio State University, Columbus, USA, 20102011 1st ed. 2016 [Kõva köide]

Edited by , Edited by , Edited by , Edited by
  • Formaat: Hardback, 174 pages, kõrgus x laius: 235x155 mm, kaal: 4085 g, 10 Illustrations, black and white; XI, 174 p. 10 illus., 1 Hardback
  • Sari: Springer Proceedings in Mathematics & Statistics 184
  • Ilmumisaeg: 15-Sep-2016
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319436732
  • ISBN-13: 9783319436739
  • Kõva köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 174 pages, kõrgus x laius: 235x155 mm, kaal: 4085 g, 10 Illustrations, black and white; XI, 174 p. 10 illus., 1 Hardback
  • Sari: Springer Proceedings in Mathematics & Statistics 184
  • Ilmumisaeg: 15-Sep-2016
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319436732
  • ISBN-13: 9783319436739
This book presents articles at the interface of two active areas of research: classical topology and the relatively new field of geometric group theory. It includes two long survey articles, one on proofs of the Farrell-Jones conjectures, and the other on ends of spaces and groups. In 2010-2011, Ohio State University (OSU) hosted a special year in topology and geometric group theory. Over the course of the year, there were seminars, workshops, short weekend conferences, and a major conference out of which this book resulted.Four other research articles complement these surveys, making this book ideal for graduate students and established mathematicians interested in entering this area of research.

1. Arthur Bartels : On proofs of the Farrell-Jones Conjecture.- 2. Daniel Juan-Pineda and Luis Jorge Sanchez Saldana : The K- and L-theoretic Farrell-Jones Isomorphism conjecture for braid groups.- 3. Craig Guilbault : Ends, shapes, and boundaries in manifold topology and geometric group theory.- 4. Daniel Farley : A proof of Sageev"s Theorem on hyperplanes in CAT(0) cubical complexes.- 5. Pierre-Emmanuel Caprace and Bertrand Remy : Simplicity of twin tree lattices with non-trivial commutation relations.- 6. Peter Kropholler : Groups with many finitary cohomology functors.
1 On Proofs of the Farrell--Jones Conjecture
1(32)
Arthur Bartels
2 The K and L Theoretic Farrell-Jones Isomorphism Conjecture for Braid Groups
33(12)
Daniel Juan-Pineda
Luis Jorge Sanchez Saldana
3 Ends, Shapes, and Boundaries in Manifold Topology and Geometric Group Theory
45(82)
Craig R. Guilbault
4 A Proof of Sageev's Theorem on Hyperplanes in CAT(O) Cubical Complexes
127(16)
Daniel Farley
5 Simplicity of Twin Tree Lattices with Non-trivial Commutation Relations
143(10)
Pierre-Emmanuel Caprace
Bertrand Remy
6 Groups with Many Finitary Cohomology Functors
153(20)
Peter H. Kropholler
Index 173