Muutke küpsiste eelistusi

Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization [Kõva köide]

  • Formaat: Hardback, 220 pages, kõrgus: 230 mm, bibliography, index
  • Sari: Applied Optimization v. 40
  • Ilmumisaeg: 31-May-2000
  • Kirjastus: Kluwer Academic Publishers
  • ISBN-10: 079236287X
  • ISBN-13: 9780792362876
  • Kõva köide
  • Hind: 76,45 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 89,95 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 220 pages, kõrgus: 230 mm, bibliography, index
  • Sari: Applied Optimization v. 40
  • Ilmumisaeg: 31-May-2000
  • Kirjastus: Kluwer Academic Publishers
  • ISBN-10: 079236287X
  • ISBN-13: 9780792362876
The main purpose of this book is to present, in a unified approach, several algorithms for fixed point computation, convex feasibility and convex optimization in infinite dimensional Banach spaces, and for problems involving, eventually, infinitely many constraints. For instance, methods like the simultaneous projection algorithm for feasibility, the proximal point algorithm and the augmented Lagrangian algorithm are rigorously formulated and analyzed in this general setting and shown to be applicable to much wider classes of problems than previously known. For this purpose, a new basic concept, "total convexity", is introduced. Its properties are deeply explored, and a comprehensive theory is presented, bringing together previously unrelated ideas from Banach space geometry, finite dimensional convex optimization and functional analysis. For making a general approach possible the work aims to improve upon classical results like the Holder-Minkowsky inequality of ℒp. This book should be of interest to both researchers in nonlinear analysis and to applied mathematicians dealing with numerical solution of integral equations, equilibrium problems, image reconstruction, and optimal control.
Introduction xi
Totally Convex Functions
Convex Functions and Bregman Distances
1(16)
The Modulus of Total Convexity
17(13)
Total Versus Locally Uniform Convexity
30(15)
Particular Totally Convex Functions
45(20)
Computation of Fixed Points
Totally Nonexpansive Operators
65(14)
Totally Nonexpansive Families of Operators
79(13)
Stochastic Convex Feasibility Problems
92(17)
Applications in Particular Banach Spaces
109(20)
Infinite Dimensional Optimization
A Proximal Point Method
129(9)
Convergence of the Proximal Point Method
138(7)
The Basics of a Duality Theory
145(9)
An Augmented Lagrangian Method
154(17)
Unconstrained Convex Minimization
171(18)
Bibliography 189(12)
Index 201