Muutke küpsiste eelistusi

Toward Robots That Reason: Logic, Probability & Causal Laws 2023 ed. [Pehme köide]

  • Formaat: Paperback / softback, 190 pages, kõrgus x laius: 240x168 mm, kaal: 354 g, 14 Illustrations, color; 13 Illustrations, black and white; XIII, 190 p. 27 illus., 14 illus. in color., 1 Paperback / softback
  • Sari: Synthesis Lectures on Artificial Intelligence and Machine Learning
  • Ilmumisaeg: 22-Feb-2024
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031210050
  • ISBN-13: 9783031210051
  • Pehme köide
  • Hind: 39,43 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 46,39 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 190 pages, kõrgus x laius: 240x168 mm, kaal: 354 g, 14 Illustrations, color; 13 Illustrations, black and white; XIII, 190 p. 27 illus., 14 illus. in color., 1 Paperback / softback
  • Sari: Synthesis Lectures on Artificial Intelligence and Machine Learning
  • Ilmumisaeg: 22-Feb-2024
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031210050
  • ISBN-13: 9783031210051
This book discusses the two fundamental elements that underline the science and design of artificial intelligence (AI) systems: the learning and acquisition of knowledge from observational data, and the reasoning of that knowledge together with whatever information is available about the application at hand. It then presents a mathematical treatment of the core issues that arise when unifying first-order logic and probability, especially in the presence of dynamics, including physical actions, sensing actions and their effects. A model for expressing causal laws describing dynamics is also considered, along with computational ideas for reasoning with such laws over probabilistic logical knowledge.
Preface.- Acknowledgments.- Introduction.- Representation Matters.- From Predicate Calculus to the Situation Calculus.- Knowledge.- Probabilistic Beliefs.- Continuous Distributions.- Localization.- Regression & Progression.- Programs.- A Modal Reconstruction.- Conclusions.
Vaishak Belle, Ph.D., is a Chancellors Fellow and Reader at The University of Edinburgh School of Informatics. He is also an Alan Turing Institute Faculty Fellow, a Royal Society University Research Fellow, and a member of the Royal Society of Edinburghs Young Academy of Scotland. Dr. Belle directs a research lab on artificial intelligence at The University of Edinburgh, specializing in the unification of symbolic logic and machine learning. He has co-authored over 50 scientific articles on AI, and has won several best paper awards.